Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(17): 4231-4242, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38639329

RESUMO

Three nonhalogenated ionic liquids (ILs) dissolved in 2-ethylhexyl laurate (2-EHL), a biodegradable oil, are investigated in terms of their bulk and electro-interfacial nanoscale structures using small-angle neutron scattering (SANS) and neutron reflectivity (NR). The ILs share the same trihexyl(tetradecyl)phosphonium ([P6,6,6,14]+) cation paired with different anions, bis(mandelato)borate ([BMB]-), bis(oxalato)borate ([BOB]-), and bis(salicylato)borate ([BScB]-). SANS shows a high aspect ratio tubular self-assembly structure characterized by an IL core of alternating cations and anions with a 2-EHL-rich shell or corona in the bulk, the geometry of which depends upon the anion structure and concentration. NR also reveals a solvent-rich interfacial corona layer. Their electro-responsive behavior, pertaining to the structuring and composition of the interfacial layers, is also influenced by the anion identity. [P6,6,6,14][BOB] exhibits distinct electroresponsiveness to applied potentials, suggesting an ion exchange behavior from cation-dominated to anion-rich. Conversely, [P6,6,6,14][BMB] and [P6,6,6,14][BScB] demonstrate minimal electroresponses across all studied potentials, related to their different dissociative and diffusive behavior. A mixed system is dominated by the least soluble IL but exhibits an increase in disorder. This work reveals the subtlety of anion architecture in tuning bulk and electro-interfacial properties, offering valuable molecular insights for deploying nonhalogenated ILs as additives in biodegradable lubricants and supercapacitors.

2.
Front Chem ; 11: 1203278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476653

RESUMO

In the present work, nicotinamide-oxalic acid (NIC-OXA, form I) salt was crystallized by slow evaporation of an aqueous solution. To understand the molecular structure and spectroscopic properties of NIC after co-crystallization with OXA, experimental infrared (IR), Raman spectroscopic signatures, X-ray powder diffraction (XRPD), and differential scanning calorimetry (DSC) techniques were used to characterize and validate the salt. The density functional theory (DFT) methodology was adopted to perform all theoretical calculations by using the B3LYP/6-311++G (d, p) functional/basis set. The experimental geometrical parameters were matched in good correlation with the theoretical parameters of the dimer than the monomer, due to the fact of covering the nearest hydrogen bonding interactions present in the crystal structure of the salt. The IR and Raman spectra of the dimer showed the red (downward) shifting and broadening of bands among (N15-H16), (N38-H39), and (C13=O14) bonds of NIC and (C26=O24), (C3=O1), and (C26=O25) groups of OXA, hence involved in the formation of NIC-OXA salt. The atoms in molecules (AIM) analysis revealed that (N8-H9···O24) is the strongest (conventional) intermolecular hydrogen bonding interaction in the dimer model of salt with the maximum value of interaction energy -12.1 kcal mol-1. Furthermore, the natural bond orbital (NBO) analysis of the Fock matrix showed that in the dimer model, the (N8-H9···O24) bond is responsible for the stabilization of the salt with an energy value of 13.44 kcal mol-1. The frontier molecular orbitals (FMOs) analysis showed that NIC-OXA (form I) salt is more reactive and less stable than NIC, as the energy gap of NIC-OXA (form I) salt is less than that of NIC. The global and local reactivity descriptor parameters were calculated for the monomer and dimer models of the salt. The electrophilic, nucleophilic, and neutral reactive sites of NIC, OXA, monomer, and dimer models of salt were visualized by plotting the molecular electrostatic potential (MESP) surface. The study provides valuable insights into combining both experimental and theoretical results that could define the physicochemical properties of molecules.

3.
Small ; 19(43): e2300912, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37395635

RESUMO

A series of 19 ionic liquids (ILs) based on phosphonium and imidazolium cations of varying alkyl-chain lengths with the orthoborate anions bis(oxalato)borate [BOB]- , bis(mandelato)borate, [BMB]- and bis(salicylato)borate, [BScB]- , are synthesized and studied using small-angle neutron scattering (SANS). All measured systems display nanostructuring, with 1-methyl-3-n-alkyl imidazolium-orthoborates forming clearly bicontinuous L3 spongelike phases when the alkyl chains are longer than C6 (hexyl). L3 phases are fitted using the Teubner and Strey model, and diffusely-nanostructured systems are primarily fitted using the Ornstein-Zernicke correlation length model. Strongly-nanostructured systems have a strong dependence on the cation, with molecular architecture variation explored to determine the driving forces for self-assembly. The ability to form well-defined complex phases is effectively extinguished in several ways: methylation of the most acidic imidazolium ring proton, replacing the imidazolium 3-methyl group with a longer hydrocarbon chain, substitution of [BOB]- by [BMB]- , or exchanging the imidazolium for phosphonium systems, irrespective of phosphonium architecture. The results suggest there is only a small window of opportunity, in terms of molecular amphiphilicity and cation:anion volume matching, for the formation of stable extensive bicontinuous domains in pure bulk orthoborate-based ILs. Particularly important for self-assembly processes appear to be the ability to form H-bonding networks, which offer additional versatility in imidazolium systems.

4.
Front Chem ; 10: 855132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372271

RESUMO

The computational modeling supported with experimental results can explain the overall structural packing by predicting the hydrogen bond interactions present in any cocrystals (active pharmaceutical ingredients + coformer) as well as salts. In this context, the hydrogen bonding synthons, physiochemical properties (chemical reactivity and stability), and drug-likeliness behavior of proposed nicotinamide-oxalic acid (NIC-OXA) salt have been reported by using vibrational spectroscopic signatures (IR and Raman spectra) and quantum chemical calculations. The NIC-OXA salt was prepared by reactive crystallization method. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) techniques were used for the characterization and validation of NIC-OXA salt. The spectroscopic signatures revealed that (N7-H8)/(N23-H24) of the pyridine ring of NIC, (C═O), and (C-O) groups of OXA were forming the intermolecular hydrogen bonding (N-H⋯O-C), (C-H⋯O═C), and (N-H⋯O═C), respectively, in NIC-OXA salt. Additionally, the quantum theory of atoms in molecules (QTAIM) showed that (C10-H22⋯O1) and (C26-H38⋯O4) are two unconventional hydrogen bonds present in NIC-OXA salt. Also, the natural bond orbital analysis was performed to find the charge transfer interactions and revealed the strongest hydrogen bonds (N7-H8⋯O5)/(N23-H24⋯O2) in NIC-OXA salt. The frontier molecular orbital (FMO) analysis suggested more reactivity and less stability of NIC-OXA salt in comparison to NIC-CA cocrystal and NIC. The global and local reactivity descriptors calculated and predicted that NIC-OXA salt is softer than NIC-CA cocrystal and NIC. From MESP of NIC-OXA salt, it is clear that electrophilic (N7-H8)/(N23-H24), (C6═O4)/(C3═O1) and nucleophilic (C10-H22)/(C26-H38), (C6-O5)/(C3-O2) reactive groups in NIC and OXA, respectively, neutralize after the formation of NIC-OXA salt, confirming the presence of hydrogen bonding interactions (N7-H8⋯O5-C6) and (N23-H24⋯O2-C3). Lipinski's rule was applied to check the activeness of salt as an orally active form. The results shed light on several features of NIC-OXA salt that can further lead to the improvement in the physicochemical properties of NIC.

5.
Front Chem ; 10: 848014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242745

RESUMO

Ezetimibe (EZT) being an anticholesterol drug is frequently used for the reduction of elevated blood cholesterol levels. With the purpose of improving the physicochemical properties of EZT, in the present study, cocrystals of ezetimibe with L-proline have been studied. Theoretical geometry optimization of EZT-L-proline cocrystal, energies, and structure-activity relationship was carried out at the DFT level of theory using B3LYP functional complemented by 6-311++G(d,p) basis set. To better understand the role of hydrogen bonding, two different models (EZT + L-proline and EZT + 2L-proline) of EZT-L-proline cocrystal were studied. Spectral techniques (FTIR and FT-Raman) combined with quantum chemical methodologies were successfully implemented for the detailed vibrational assignment of fundamental modes. It is a zwitterionic cocrystal hydrogen bonded with the OH group of EZT and the COO- group of L-proline. The existence and strength of hydrogen bonds were examined by a natural bond orbital analysis (NBO) supported by the quantum theory of atoms in molecule (QTAIM). Chemical reactivity was reflected by the HOMO-LUMO analysis. A smaller energy gap in the cocrystal in comparison to API shows that a cocrystal is softer and chemically more reactive. MEPS and Fukui functions revealed the reactive sites of cocrystals. The calculated binding energy of the cocrystal from counterpoise method was -11.44 kcal/mol (EZT + L-proline) and -26.19 kcal/mol (EZT + 2L-proline). The comparative study between EZT-L-proline and EZT suggest that cocrystals can be better used as an alternative to comprehend the effect of hydrogen bonding in biomolecules and enhance the pharmacological properties of active pharmaceutical ingredients (APIs).

6.
Front Chem ; 9: 708538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381761

RESUMO

The pharmaceutical cocrystal of caffeine-citric acid (CAF-CA, Form II) has been studied to explore the presence of hydrogen bonding interactions and structure-reactivity-property relationship between the two constituents CAF and Citric acid. The cocrystal was prepared by slurry crystallization. Powder X-ray diffraction (PXRD) analysis was done to characterize CAF-CA cocrystal. Also, differential scanning calorimetry (DSC) confirmed the existence of CAF-CA cocrystal. The vibrational spectroscopic (FT-IR and FT-Raman) signatures and quantum chemical approach have been used as a strategy to get insights into structural and spectral features of CAF-CA cocrystal. There was a good correlation among the experimental and theoretical results of dimer of cocrystal, as this model is capable of covering all nearest possible interactions present in the crystal structure of cocrystal. The spectroscopic results confirmed that (O33-H34) mode forms an intramolecular (C25 = O28∙∙∙H34-O33), while (O26-H27) (O39-H40) and (O43-H44) groups form intermolecular hydrogen bonding (O26-H27∙∙∙N24-C22, O39-H40∙∙∙O52 = C51 and O43-H44∙∙∙O86 = C83) in cocrystal due to red shifting and increment in bond length. The quantum theory of atoms in molecules (QTAIM) analysis revealed (O88-H89∙∙∙O41) as strongest intermolecular hydrogen bonding interaction with interaction energy -12.4247 kcal mol-1 in CAF-CA cocrystal. The natural bond orbital analysis of the second-order theory of the Fock matrix highlighted the presence of strong interactions (N∙∙∙H and O∙∙∙H) in cocrystal. The HOMO-LUMO energy gap value shows that the CAF-CA cocrystal is more reactive, less stable and softer than CAF active pharmaceutical ingredients. The electrophilic and nucleophilic reactivities of atomic sites involved in intermolecular hydrogen bond interactions in cocrystal have been demonstrated by mapping electron density isosurfaces over electrostatic potential i.e. plotting molecular electrostatic potential (MESP) map. The molar refractivity value of cocrystal lies within the set range by Lipinski and hence it may be used as orally active form. The results show that the physicochemical properties of CAF-CA cocrystal are enhanced in comparison to CAF (API).

7.
Phys Chem Chem Phys ; 23(10): 6190-6203, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33687391

RESUMO

It was found that Li[BOB]·nH2O salts were not readily suitable for the synthesis of high-purity orthoborate-based tetraalkylphosphonium ionic liquids, as exemplified here for trihexyl(tetradecyl)phosphonium bis(oxalato)borate, [P6,6,6,14][BOB]; along with [BOB]-, a metastable transition anionic complex (TAC) of dihydroxy(oxalato)borate with oxalic acid, [B(C2O4)(OH)2·(HOOC-COOH)]-, was also formed and passed into the ionic liquid in the course of the metathesis reaction with trihexyl(tetradecyl)phosphonium chloride. On the contrary, Na[BOB] was found to be a more suitable reagent for the synthesis of this IL, because [BOB]- anions safely passed into the final IL without hydrolysis, when metathesis reactions were performed using aqueous-free media. Since ultra-pure Na[BOB] is not commercially available, in this work, a preparation protocol for ultra-pure (>99%) Na[BOB] was developed: (i) molar ratios of boric and oxalic acids were optimised to minimise boron-containing impurities, (ii) the Na[BOB] product was thoroughly purified by sequential washing of a fine powder product in hot acetonitrile and ethanol and (iii) characterised using powder X-ray diffraction and solid-state 11B MAS NMR spectroscopy. The physico-chemical properties of the prepared boron-impurity-free IL, i.e., its density, viscosity, electric conductivity, glass-transition temperature and thermal stability, were found to be significantly different from those of the previously reported [P6,6,6,14][BOB], containing ca. 45 mol% of TAC, [B(C2O4)(OH)2·(HOOC-COOH)]-. It was found that a high-purity [P6,6,6,14][BOB] prepared in this work has a considerably lower viscosity, a higher viscosity index and a wider electro-chemical window (ECW) compared to those of the sample of [P6,6,6,14][BOB] with ca. 45 mol% of TAC. Interestingly, [B(C2O4)(OH)2·(HOOC-COOH)]- in the latter sample almost completely transformed into [BOB]- anions upon heating of the IL sample at 413 K for 1 hour, as confirmed using both 11B and 13C NMR. Therefore, in this work, apart from a well-optimised synthetic protocol for boron-impurity-free [P6,6,6,14][BOB], implications of boron-containing transition anionic complexes in tetraalkylphosphonium-orthoborate ILs used in different applications were highlighted.

8.
Drug Dev Ind Pharm ; 43(1): 89-97, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27486671

RESUMO

Objectives were to study mechanical properties of various solid forms of paracetamol and relate to their crystal structures. Paracetamol form I (PRA), its cocrystals with oxalic acid (PRA-OXA) and 4,4-bipyridine (PRA-BPY) and hydrochloride salt (PRA-HCL) were selected. Cocrystals and salt were scaled-up using rational crystallization methods. The resulting materials were subjected to different solid-state characterizations. The powders were sieved and 90-360 µm sieve fraction was considered. These powders were examined by scanning electron microscopy (SEM) and densities were determined. Tablets were made at applied pressures of 35-180 MPa under controlled conditions and the tablet height, diameter and hardness were measured. Tensile strength and porosity of the tablets were estimated using well known models. Crystal structures of these systems were visualized and slip planes were identified. Cocrystal and salt of PRA were physically pure. Sieved powders had comparable morphologies and particle size. The apparent and theoretical densities of powders were similar, but no clear trends were observed. The tensile strengths of these compacts were increased with increasing pressure whereas tabletability decreased in the order oxalic acid > PRA-HCL ≈ PRA-OXA > BPY > PRA-BPY. Tablet tensile strength decreases exponentially with increasing porosity with the exception of PRY-BPY and BPY. Slip plane prediction based on attachment energies may not be independently considered. However, it was possible to explain the improved mechanical properties of powders based on the crystal structure. Cocrystallization and salt formation have introduced structural features that are responsible for improved tableting properties of PRA.


Assuntos
Acetaminofen/química , Analgésicos não Narcóticos/química , Ácido Clorídrico/química , Ácido Oxálico/química , Estresse Mecânico , Química Farmacêutica , Cristalização , Estrutura Molecular , Difração de Raios X
9.
J Phys Chem B ; 120(30): 7446-55, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27387981

RESUMO

Atomistic molecular dynamics simulations have been performed to investigate volumetric quantities and dynamic properties of binary trihexyltetradecylphosphonium bis(oxalato)borate ([P6,6,6,14][BOB]) ionic liquid (IL)/water mixtures with different water concentrations. The predicted liquid densities for typical [P6,6,6,14][BOB] IL/water mixtures are consistent with available experimental data with a relative discrepancy of less than 3%. The liquid densities and excess molar volumes of all studied [P6,6,6,14][BOB] IL/water mixtures are characterized by concave and convex features, respectively, within full water concentration range. The dynamic properties of [P6,6,6,14] cations, [BOB] anions, and water molecules are particularly analyzed through calculation of velocity autocorrelation functions, diffusion coefficients, and reorientational autocorrelation functions and correlation times. The translational and reorientational mobilities of three species become faster upon increasing water concentration in [P6,6,6,14][BOB] IL/water mixtures and present complex dynamical characteristics arising from three distinct microscopic diffusion features within the full water concentration range. The obtained striking volumetric quantities and particular dynamic properties are well correlated to microscopic liquid structural organization and distinct local ionic environment of all studied [P6,6,6,14][BOB] IL/water mixtures.

10.
Carbohydr Res ; 405: 33-8, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25746392

RESUMO

Carbohydrate-functionalized single-walled carbon nanotubes (SWNTs) were synthesized using microwave-assisted reaction of perfluorophenyl azide with the nanotubes. The results showed that microwave radiation provides a rapid and effective means to covalently attach carbohydrates to SWNTs, producing carbohydrate-SWNT conjugates for biorecognition. The carbohydrate-functionalized SWNTs were furthermore shown to interact specifically with cognate carbohydrate-specific proteins (lectins), resulting in predicted recognition patterns. The carbohydrate-presenting SWNTs constitute a new platform for sensitive protein- or cell recognition, which pave the way for glycoconjugated carbon nanomaterials in biorecognition applications.


Assuntos
Azidas/química , Carboidratos/química , Hidrocarbonetos Fluorados/química , Micro-Ondas , Nanocompostos/química , Nanotubos de Carbono/química , Lectinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA