Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(22): 28808-28817, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775279

RESUMO

This paper reports chemiresistive multiarray gas sensors through the synthesized ternary nanocomposites, using a one-pot method to integrate two-dimensional MXene (Ti3C2Tx) with Ti-doped WO3 (Ti-WO3/Ti3C2Tx) and Ti3C2Tx with Pd-doped SnO2 (Pd-SnO2/Ti3C2Tx). The gas sensors based on Ti-WO3/Ti3C2Tx and Pd-SnO2/Ti3C2Tx exhibit exceptional sensitivity, particularly in detecting 70% at 1 ppm acetone and 91.1% at 1 ppm of H2S. Notably, our sensors demonstrate a remarkable sensing performance in the low-ppb range for acetone and H2S. Specifically, the Ti-WO3/Ti3C2Tx sensor demonstrates a detection limit of 0.035 ppb for acetone, and the Pd-SnO2/Ti3C2Tx sensor shows 0.116 ppb for H2S. Simultaneous measurements with Ti-WO3/Ti3C2Tx- and Pd-SnO2/Ti3C2Tx-based sensors enable the evaluation of both the concentration and type of unknown target gases, such as acetone or H2S. Furthermore, density functional theory calculations are performed to clarify the role of Ti and Pd doping in enhancing the performance of Ti-WO3/Ti3C2Tx and Pd-SnO2/Ti3C2Tx nanocomposites. Theoretical simulations contribute to a deeper understanding of the doping effects, providing essential insights into the mechanisms underlying the enhanced gas response of the gas sensors. Overall, this work provides valuable insights into the gas-sensing mechanisms and introduces a novel approach for high-performance multiarray gas sensing.

2.
ACS Appl Mater Interfaces ; 9(16): 14216-14221, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28374989

RESUMO

We report the role of defects in enzymatic graphene field-effect transistor sensors by introducing engineered defects in graphene channels. Compared with conventional graphene sensors (Gr sensors), graphene mesh sensors (GM sensors), with an array of circular holes, initially exhibited a higher irreversible response to glucose, involving strong chemisorption to edge defects. However, after immobilization of glucose oxidase, the irreversibility of the responses was substantially diminished, without any reduction in the sensitivity of the GM sensors (i.e., -0.53 mV/mM for the GM sensor vs -0.37 mV/mM for Gr sensor). Furthermore, multiple cycle operation led to rapid sensing and improved the reversibility of GM sensors. In addition, control tests with sensors containing a linker showed that sensitivity was increased in Gr sensors but decreased in GM sensors. Our findings indicate that edge defects can be used to replace linkers for immobilization of glucose oxidase and improve charge transfer across glucose oxidase-graphene interfaces.

3.
ACS Appl Mater Interfaces ; 8(1): 834-9, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26692009

RESUMO

We have studied the role of defects in electrolyte-gated graphene mesh (GM) field-effect transistors (FETs) by introducing engineered edge defects in graphene (Gr) channels. Compared with Gr-FETs, GM-FETs were characterized as having large increments of Dirac point shift (∼30-100 mV/pH) that even sometimes exceeded the Nernst limit (59 mV/pH) by means of electrostatic gating of H(+) ions. This feature was attributed to the defect-mediated chemisorptions of H(+) ions to the graphene edge, as supported by Raman measurements and observed cycling characteristics of the GM FETs. Although the H(+) ion binding to the defects increased the device response to pH change, this binding was found to be irreversible. However, the irreversible component showed relatively fast decay, almost disappearing after 5 cycles of exposure to solutions of decreasing pH value from 8.25 to 6.55. Similar behavior could be found in the Gr-FET, but the irreversible component of the response was much smaller. Finally, after complete passivation of the defects, both Gr-FETs and GM-FETs exhibited only reversible response to pH change, with similar magnitude in the range of 6-8 mV/pH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA