Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(22): 8445-8461, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37220663

RESUMO

Four sterically distorted quaterpyridyl (qpy) ligand-bridged Ir(III)-Re(I) heterometallic complexes (Ir-qpymm-Re, Ir-qpymp-Re, Ir-qpypm-Re, and Ir-qpypp-Re), in which the position of the coupling pyridine unit of the two 2,2'-bipyridine ligands was varied (meta (m)- or para (p)-position), pypyx-pyxpy (x = m and m, qpymm; x = m and p, qpymp; x = p and m, qpypm; x = p and p, qpypp), were prepared, along with the fully π-conjugated Ir(III)-[π linker]-Re(I) complexes (π linker = 2,2'-bipyrimidine (bpm), Ir-bpm-Re; π linker = 2,5-di(pyridin-2-yl)pyrazine (dpp), Ir-dpp-Re) to elucidate the electron mediating and accumulative charge separation properties of the bridging π-linker in a bimetallic system (photosensitizer-π linker-catalytic center). From the photophysical and electrochemical studies, it was found that the quaterpyridyl (qpy) bridging ligand (BL), in which the two planar Ir/Re metalated bipyridine (bpy) ligands were connected but slightly canted relative to each other, linking the heteroleptic Ir(III) photosensitizer, [(piqC^N)2IrIII(bpy)]+, and catalytic Re(I) complex, (bpy)ReI(CO)3Cl, minimized the energy lowering of the qpy BL, which hampers the forward photoinduced electron transfer (PET) process from [(piqC^N)2IrIII(N^N)]+ to (N^N)ReI(CO)3Cl (Ered1 = -(0.85-0.93) V and Ered2 = -(1.15-1.30) V vs SCE). This result contrasts with the fully π-delocalized bimetallic systems (Ir-bpm-Re and Ir-dpp-Re) that show a significant energy reduction due to the considerable π-extension and deshielding effect caused by the neighboring Lewis acidic metals (Ir and Re) on the electrochemical scale (Ered1 = -0.37 V and Ered2 = -1.02 and -0.99 V vs SCE). Based on a series of anion absorption studies and spectroelectrochemical (SEC) analyses, all Ir(III)-BL-Re(I) bimetallic complexes were found to exist as dianionic form (Ir(III)-[BL]2--Re(I)) after a fast reductive-quenching process in the presence of excess electron donor. In the photolysis experiment, the four Ir-qpy-Re complexes displayed the reasonable photochemical CO2-to-CO conversion activities (TON of 366-588 for 19 h) owing to the moderated electronic coupling between two functional Ir(III) and Re(I) centers through the slightly distorted qpy ligand, whereas Ir-bpm-Re and Ir-dpp-Re displayed negligible performances as a result of the strong electronic coupling via π-conjugation between the two functional components resulting in the energetic constraints for PET and an unwanted side reactions competing with the forward processes. These results confirm that the qpy unit can be utilized as an efficient BL platform in π-linked bimetallic systems.

2.
J Phys Chem Lett ; 14(6): 1535-1541, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36745190

RESUMO

We report the electron transfer (ET) dynamics in a series of Ir(III)-Re(I) photocatalysts where two bipyridyl ligands of Ir and Re moieties are conjugated at the meta (m)- or para (p)-position of each side. Femtosecond transient absorption (TA) measurements identify the intramolecular ET (IET) dynamics from the Ir to Re moiety, followed by the formation of one-electron-reduced species (OERS) via the intermolecular ET with a sacrificial electron donor (SED). The IET rate depends on the bridging ligand (BL) structures (∼25 ps for BLmm/mp vs ∼68 ps for BLpm/pp), while the OERS formation happens on an even slower time scale (∼1.4 ns). Connecting the Re moiety at the meta-position of the bipyridyl of the Ir moiety can restrict the rotation around a covalent bond between two bipyridyl ligands by steric hindrances and facilitate the IET process. This highlights the importance of BL structures on the ET dynamics in photocatalysts.

3.
ACS Appl Mater Interfaces ; 14(45): 50718-50730, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36331558

RESUMO

In this study, a p-type π-conjugated polymer chain, poly(3-hexylthiophene-2,5-diyl) (P3HT), was physically adsorbed onto n-type TiO2 nanoparticles functionalized with a molecular CO2 reduction catalyst, (4,4-Y2-bpy)ReI(CO)3Cl (ReP, Y = CH2PO(OH)2), to generate a new type of P3HT-heterogenized hybrid system (P3HT/TiO2/ReP), and its photosensitizing properties were assessed in a heteroternary system for photochemical CO2 reduction. We found that P3HT immobilization on TiO2 facilitated photoinduced electron transfer (PET) from photoactivated P3HT* to the n-type TiO2 semiconductor via rapid interfacial electron injection (∼65 ps) at the P3HT and TiO2 surface interface (P3HT* → TiO2). With such effective charge separation, the heterogenization of P3HT onto TiO2 resulted in a steady electron supply toward the co-adsorbed Re(I) catalyst, attaining durable catalytic activity with a turnover number (TON) of ∼5300 over an extended time period of 655 h over five consecutive photoreactions, without deformation of the adsorbed P3HT polymer. The long-period structural stability of TiO2-adsorbed P3HT was verified based on a comparative analysis of its photophysical properties before and after 655 h of photolysis. To our knowledge, this conversion activity is the highest reported so far for polymer-sensitized photochemical CO2 reduction systems. This investigation provides insights and design guidelines for photocatalytic systems that utilize organic photoactive polymers as photosensitizing units.

4.
Molecules ; 28(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36615303

RESUMO

The co-facially stacked dyes on semiconductor films serve as an alternative model to elucidate the photo-driven exciton dynamics occurring in a molecular assembly. In this study, we report the unique emission properties of coumarin dye adsorbed on the surface of the semiconductor film, measured by ultrafast time-resolved fluorescence. When a rigid coumarin derivative, 7-hydroxycoumarin-3-carboxylic acid (OHCCA), is anchored on the Al2O3 film, the dye manifests dual emissions from the two lowest excited states. Various anchoring modes of a carboxylic acid group on the Al2O3 surface are invoked to account for the unusual emission process. Additionally, we identified characteristic transition dipole interactions in the well-stacked dye aggregates, which leads to discernible excitonic splitting in the electronic transitions. Femtosecond time-resolved fluorescence reveals that the excimer formation in the aggregate occurs with the time constant of 550 fs. Picosecond time-resolved emission spectra confirm the subsequent structural relaxations of the nascent excimer. The enhanced transition dipole via the electronic coupling between OHCCA and metal oxide can be responsible for the dual emission and the ultrafast excimer formation.

5.
Molecules ; 28(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36615521

RESUMO

Photocatalytic systems for CO2 reduction operate via complicated multi-electron transfer (ET) processes. A complete understanding of these ET dynamics can be challenging but is key to improving the efficiency of CO2 conversion. Here, we report the ET dynamics of a series of zinc porphyrin derivatives (ZnPs) in the photosensitization reactions where sequential ET reactions of ZnPs occur with a sacrificial electron donor (SED) and then with TiO2. We employed picosecond time-resolved fluorescence spectroscopy and femtosecond transient absorption (TA) measurement to investigate the fast ET dynamics concealed in the steady-state or slow time-resolved measurements. As a result, Stern-Volmer analysis of fluorescence lifetimes evidenced that the reaction of photoexcited ZnPs with SED involves static and dynamic quenching. The global fits to the TA spectra identified much faster ET dynamics on a few nanosecond-time scales in the reactions of one-electron reduced species (ZnPs•-) with TiO2 compared to previously measured minute-scale quenching dynamics and even diffusion rates. We propose that these dynamics report the ET dynamics of ZnPs•- formed at adjacent TiO2 without involving diffusion. This study highlights the importance of ultrafast time-resolved spectroscopy for elucidating the detailed ET dynamics in photosensitization reactions.

6.
J Phys Chem B ; 125(17): 4566-4581, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33890776

RESUMO

Benzene complex formation and dissociation dynamics with silanols on the amorphous silica surfaces of nanoporous SiO2, from a benzene/carbon tetrachloride solution, were measured by the growth of off-diagonal peaks in the two-dimensional infrared (2D IR) chemical exchange spectrum of the isolated Si-OD stretch. The presence of two types of isolated silanols, termed type I and II, was revealed, with dissociation time constants of 82 and 4.0 ps, respectively. The type I silanols are associated with the main IR absorption feature in the Si-OD stretching region, while the type II silanols give rise to a broader shoulder to lower frequency. Polarization selective pump-probe (PSPP) measurements provided the vibrational lifetimes and orientational relaxation rates of the two silanols in the CCl4 (free) and benzene (complex) environments. The type II silanols constitute roughly 30% of the isolated silanol population and exhibit a substantially faster rate of vibrational relaxation, making the type I dynamics the dominant contribution to the PSPP and 2D IR signals. From the measured dissociation times, the enthalpies of formation for the two surface complexes were obtained, with the formation of the type I complex being significantly more exothermic. As the type II site is preferentially removed from the amorphous silica surface with increasing activation temperature, the results provide a reasonable explanation for the increased exothermicity of benzene adsorption on silica with increasing activation temperature in previous calorimetry experiments.

7.
J Am Chem Soc ; 143(4): 2049-2058, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33464054

RESUMO

Singlet fission (SF) is a photophysical process capable of boosting the efficiency of solar cells. Recent experimental investigations into the mechanism of SF provide evidence for coherent mixing between the singlet, triplet, and charge transfer basis states. Up until now, this interpretation has largely focused on electronic interactions; however, nuclear motions resulting in vibronic coupling have been suggested to support rapid and efficient SF in organic chromophore assemblies. Further information about the complex interactions between vibronic excited states is needed to understand the potential role of this coupling in SF. Here, we report mixed singlet and correlated triplet pair states giving rise to sub-50 fs SF in a terrylene-3,4:11,12-bis(dicarboximide) (TDI) dimer in which the two TDI molecules are covalently linked by a direct N-N connection at one of their imide positions, leading to a linear dimer with perpendicular TDI π systems. We observe the transfer of low-frequency coherent wavepackets between the initial predominantly singlet states to the product triplet-dominated states. This implies a non-negligible dependence of SF on nonadiabatic coupling in this dimer. We interpret our experimental results in the framework of a modified Holstein Hamiltonian, which predicts that vibronic interactions between low-frequency singlet modes and high-frequency correlated triplet pair motions lead to mixing of the pure basis states. These results highlight how nonadiabatic mixing can shape the complex potential energy landscape underlying ultrafast SF.

8.
J Chem Phys ; 153(9): 094302, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32891110

RESUMO

Intramolecular singlet fission (SF) produces the multiexciton correlated triplet pair state, (T1T1), prior to the formation of free triplet excitons. The nature of the multiexciton state is complex, as generation of the (T1T1) state may involve a charge transfer (CT) intermediate and has been shown to have both mixed electronic and spin characters. According to transient absorption spectroscopy, a linear terrylene-3,4:11,12-bis(dicarboximide) dimer (TDI2) exhibits solvent-dependent excited-state dynamics. As solvent polarity increases from 1,2,4-trichlorobenzene (ε = 2.2) to chlorobenzene (ε = 5.6) to 1,2-dichlorobenzene (ε = 9.9), the SF rate in TDI2 increases and the multiexciton state, which can be thought of as a linear combination of the 1(S1S0), CT, and (T1T1) states, gains more CT character. Eventually, the CT state becomes a trap state as indicated by symmetry-breaking charge separation in TDI2 in pyridine (ε = 12.3). The dielectric environment influences not only the SF rate and the relative contributions of the 1(S1S0), CT, and (T1T1) states to the overall multiexciton state but also the rate at which the state mixing evolves, with faster dynamics in higher polarity solvents. More importantly, the tunability and presence of strong CT character in the multiexciton state have implications for SF applications since they often rely on electron transfer from the free triplet excitons. This enhanced CT character in the (T1T1) state may assist with two-electron transfer directly from the (T1T1) state, allowing for facile extraction of charges in intramolecular SF systems whose (T1T1) states do not always efficiently dissociate to two triplet excitons.

9.
Chemistry ; 26(70): 16733-16754, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32627219

RESUMO

Herein, we report the synthesis, and photochemical and -physical properties, as well as the catalytic performance, of a series of heteroleptic IrIII photosensitizers (IrPSs), [Ir(C^N)2 (N^NAryl )]+ , possessing ancillary ligands that are varied with aryl-substituents on bipyridyl unit [C^N=(2-pyridyl)benzo[b]thiophen-3-yl (btp); N^NAryl =4,4'-Y2 -bpy (Y=-Ph or -PhSi(Ph)3 ]. We found that the π-extension of bipyridyl ligand by aryl-substitution put bipyridyl ligand in use as an electron relay unit that performed charge accumulation before delivering to the catalytic center, greatly improving the overall CO2 -to-CO conversion activities. In a typical run, the aryl-substituted IrPS (tBu IrP-PhSi )-sensitized homogeneous systems (IrPS+ReI catalyst) gave a turnover number of 1340 (ΦCO =24.2 %) at the early stage of photolysis (<5 h). This study demonstrates that the π-character modulation on the ancillary bipyridyl ligand is critical for forthcoming catalytic performance.

10.
J Phys Chem Lett ; 10(23): 7498-7504, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31730346

RESUMO

Designing molecular systems that exploit vibronic coherence to improve light harvesting efficiencies relies on understanding how interchromophoric interactions, such as van der Waals forces and dipolar coupling, influence these coherences in multichromophoric arrays. However, disentangling these interactions requires studies of molecular systems with tunable structural relationships. Here, we use a combination of two-dimensional electronic spectroscopy and femtosecond stimulated Raman spectroscopy to investigate the role of steric hindrance between chromophores in driving changes to vibronic and vibrational coherences in a series of substituted perylenediimide (PDI) cyclophane dimers. We report significant differences in the frequency power spectra from the cyclophane dimers versus the corresponding monomer reference. We attribute these differences to distortion of the PDI cores from steric interactions between the substituents. These results highlight the importance of considering structural changes when rationalizing vibronic coupling in multichromophoric systems.

11.
J Phys Chem B ; 123(9): 2094-2105, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30727725

RESUMO

The dynamics of imidazole (IM) and 1-methylimidazole (1-MeIM) in the liquid phase at 95 °C were studied by IR polarization selective pump-probe and two-dimensional IR (2D IR) spectroscopies. The two molecules are very similar structurally except that IM can be simultaneously a hydrogen bond donor and acceptor and therefore forms extended hydrogen-bonded networks. The broader IR absorption spectrum and a shorter vibrational lifetime of the vibrational probe, selenocyanate anion (SeCN-), in IM vs 1-MeIM indicate that stronger hydrogen bonding exists between SeCN- and IM. Molecular dynamics (MD) simulations support the strong hydrogen bond formation between SeCN- and IM via the HN moiety. SeCN- makes two H-bonds with IM; it is inserted in the IM H-bonded chains rather than being a chain terminator. The strong hydrogen bonding influenced the reorientation dynamics of SeCN- in IM, leading to a more restricted short time angular sampling (wobbling-in-a-cone). The complete orientational diffusion time in IM is 1.7 times slower than in 1-MeIM, but the slow down is less than expected, considering the 3-fold larger viscosity of IM. The jump reorientation mechanism accounts for the anomalously fast orientational relaxation in IM, and the MD simulations determined the average jump angle of the probe between hydrogen bonding sites. Spectral diffusion time constants obtained from the 2D IR experiments are only modestly slower in IM than in 1-MeIM in spite of the significant increase in viscosity. The results indicate that the spectral diffusion sensed by the SeCN- has IM hydrogen bond dynamics contributions not present in 1-MeIM.

12.
J Phys Chem B ; 122(8): 2389-2395, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29412666

RESUMO

The influence of water on the dynamics of a room temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf2), and CO2 in the RTIL was studied in the bulk liquid and a supported ionic liquid membrane (SILM) using two-dimensional infrared (IR) and IR polarization selective pump-probe spectroscopies. In the water-saturated bulk EmimNTf2, the complete orientational randomization and structural spectral diffusion (SSD) of CO2 became faster than in the dry EmimNTf2. In the poly(ether sulfone) SILM, only the longer time components of the SSD became faster in the water-saturated RTIL; the complete orientational randomization remained similar to the dry RTIL in the SILM. The implication is that the presence of water in EmimNTf2 contained in the SILM facilitates the fluctuation of globally modified RTIL structure in the pores, but the local RTIL environments are relatively unaffected.

13.
J Am Chem Soc ; 139(32): 11222-11232, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28723129

RESUMO

Supported ionic liquid membranes (SILMs) are porous membranes impregnated with ionic liquids (ILs) and used as advanced carbon capture materials. Here, two-dimensional infrared (2D IR) and IR polarization selective pump-probe (PSPP) spectroscopies were used to investigate CO2 reorientation and spectral diffusion dynamics in SILMs. The SILM contained 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonly)imide in the poly(ether sulfone) membrane with average pore size of ∼350 nm. Two ensembles of CO2 were observed in the SILM, one in the IL phase in the membrane pores and the other in the supporting membrane polymer. CO2 in the polymer displayed a red-shifted IR absorption spectrum and a shorter vibrational lifetime of the asymmetric stretch mode compared to the IL phase. Despite the relatively large pore sizes, the complete orientational randomization of CO2 and structural fluctuations of the IL (spectral diffusion) in the pores are slower than in the bulk IL by ∼2-fold. The implication is that the IL structural change induced by the polymer interface can propagate out from the interface more than a hundred nanometers, influencing the dynamics. The dynamics in the polymer are even slower. This study demonstrates that there are significant differences in the dynamics of ILs in SILMs on a molecular level compared to the bulk IL, and the study of dynamics in SILMs can provide important information for the design of SILMs for CO2 capture.

14.
J Phys Chem B ; 121(11): 2486-2494, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28206759

RESUMO

We present evidence for vibrational enhancement of the rate of bimolecular reactions of Br atoms with dimethylsulfoxide (DMSO) and methanol (CH3OH) in the condensed phase. The abstraction of a hydrogen atom from either of these solvents by a Br atom is highly endoergic: 3269 cm-1 for DMSO and 1416 or 4414 cm-1 for CH3OH, depending on the hydrogen atom abstracted. Thus, there is no thermal abstraction reaction at room temperature. Broadband electronic transient absorption shows that following photolysis of bromine precursors Br atoms form van der Waals complexes with the solvent molecules in about 5 ps and this Br•-solvent complex undergoes recombination. To explore the influence of vibrational energy on the abstraction reactions, we introduce a near-infrared (NIR) pump pulse following the photolysis pulse to excite the first overtone of the C-H (or O-H) stretch of the solvent molecules. Using single-wavelength detection, we observe a loss of the Br•-solvent complex that requires the presence of both photolysis and NIR pump pulses. Moreover, the magnitude of this loss depends on the NIR wavelength. Although this loss of reactive Br supports the notion of vibrationally driven chemistry, it is not concrete evidence of the hydrogen-abstraction reaction. To verify that the loss of reactive Br results from the vibrationally driven bimolecular reaction, we examine the pH dependence of the solution (as a measure of the formation of the HBr product) following long-time irradiation of the sample with both photolysis and NIR pump beams. We observe that when the NIR beam is on-resonance, the hydronium ion concentration increases fourfold as compared to that when it is off-resonance, suggesting the formation of HBr via a vibrationally driven hydrogen-abstraction reaction in solution.

15.
J Am Chem Soc ; 139(1): 311-323, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27973786

RESUMO

Supported ionic liquid membranes (SILMs) are membranes that have ionic liquids impregnated in their pores. SILMs have been proposed for advanced carbon capture materials. Two-dimensional infrared (2D IR) and polarization selective IR pump-probe (PSPP) techniques were used to investigate the dynamics of reorientation and spectral diffusion of the linear triatomic anion, SeCN-, in poly(ether sulfone) (PES) membranes and room-temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf2). The dynamics in the bulk EmimNTf2 were compared to its dynamics in the SILM samples. Two PES membranes, PES200 and PES30, have pores with average sizes, ∼300 nm and ∼100 nm, respectively. Despite the relatively large pore sizes, the measurements reveal that the reorientation of SeCN- and the RTIL structural fluctuations are substantially slower in the SILMs than in the bulk liquid. The complete orientational randomization, slows from 136 ps in the bulk to 513 ps in the PES30. 2D IR measurements yield three time scales for structural spectral diffusion (SSD), that is, the time evolution of the liquid structure. The slowest decay constant increases from 140 ps in the bulk to 504 ps in the PES200 and increases further to 1660 ps in the PES30. The results suggest that changes at the interface propagate out and influence the RTIL structural dynamics even more than a hundred nanometers from the polymer surface. The differences between the IL dynamics in the bulk and in the membranes suggest that studies of bulk RTIL properties may be poor guides to their use in SILMs in carbon capture applications.

16.
J Phys Chem B ; 120(16): 3920-31, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27046419

RESUMO

A Cl atom can react with 2,3-dimethylbutane (DMB), 2,3-dimethyl-2-butene (DMBE), and 2,5-dimethyl-2,4-hexadiene (DMHD) in solution via a hydrogen-abstraction reaction. The large exoergicity of the reaction between a Cl atom and alkenes (DMBE and DMHD) makes vibrational excitation of the HCl product possible, and we observe the formation of vibrationally excited HCl (v = 1) for both reactions. In CCl4, the branching fractions of HCl (v = 1), Γ (v = 1), for the Cl-atom reactions with DMBE and DMHD are 0.14 and 0.23, respectively, reflecting an increased amount of vibrational excitation in the products of the more exoergic reaction. In addition, Γ (v = 1) for both reactions is larger in the solvent CDCl3, being 0.23 and 0.40, as the less viscous solvent apparently dampens the vibrational excitation of the nascent HCl less effectively. The bimolecular reaction rates for the Cl reactions with DMB, DMBE, and DMHD in CCl4 are diffusion limited (having rate constants of 1.5 × 10(10), 3.6 × 10(10), and 17.5 × 10(10) M(-1) s(-1), respectively). In fact, the bimolecular reaction rate for Cl + DMHD exceeds a typical diffusion-limited reaction rate, implying that the attractive intermolecular forces between a Cl atom and a C═C bond increase the rate of favorable encounters. The 2-fold increase in the reaction rate of the Cl + DMBE reaction from that of the Cl + DMB reaction likely reflects the effect of the C═C bond, while both the number of C═C bonds and the molecular geometry likely play a role in the large reaction rate of the Cl + DMHD reaction.

17.
Biochem J ; 450(3): 537-46, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23252429

RESUMO

Anti-allergic effects of dietary polyphenols were extensively studied in numerous allergic disease models, but the molecular mechanisms of anti-allergic effects by polyphenols remain poorly understood. In the present study, we show that the release of granular cargo molecules, contained in distinct subsets of granules of mast cells, is specifically mediated by two sets of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, and that various polyphenols differentially inhibit the formation of those SNARE complexes. Expression analysis of RBL-2H3 cells for 11 SNARE genes and a lipid mixing assay of 24 possible combinations of reconstituted SNAREs indicated that the only two active SNARE complexes involved in mast cell degranulation are Syn (syntaxin) 4/SNAP (23 kDa synaptosome-associated protein)-23/VAMP (vesicle-associated membrane protein) 2 and Syn4/SNAP-23/VAMP8. Various polyphenols selectively or commonly interfered with ternary complex formation of these two SNARE complexes, thereby stopping membrane fusion between granules and plasma membrane. This led to the differential effect of polyphenols on degranulation of three distinct subsets of granules. These results suggest the possibility that formation of a variety of SNARE complexes in numerous cell types is controlled by polyphenols which, in turn, might regulate corresponding membrane trafficking.


Assuntos
Degranulação Celular/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Polifenóis/farmacologia , Proteínas SNARE/metabolismo , Vesículas Transportadoras/efeitos dos fármacos , Células Cultivadas , Grânulos Citoplasmáticos/metabolismo , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Histamina/metabolismo , Humanos , Mastócitos/metabolismo , Mastócitos/fisiologia , Complexos Multiproteicos/metabolismo , Polifenóis/metabolismo , Ligação Proteica/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Vesículas Transportadoras/classificação , Vesículas Transportadoras/fisiologia , beta-N-Acetil-Hexosaminidases/metabolismo
18.
Int J Nanomedicine ; 7: 2805-16, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745543

RESUMO

BACKGROUND: Nanoparticles undergoing physicochemical changes to release enclosed drugs at acidic pH conditions are promising vehicles for antitumor drug delivery. Among the various drug carriers, high-density lipoprotein (HDL)-like nanoparticles have been shown to be beneficial for cancer chemotherapy, but have not yet been designed to be pH-responsive. METHODS AND RESULTS: In this study, we developed a pH-responsive HDL-like nanoparticle that selectively releases paclitaxel, a model antitumor drug, at acidic pH. While the well known HDL-like nanoparticle containing phospholipids, phosphatidylcholine, and apolipoprotein A-I, as well as paclitaxel (PTX-PL-NP) was structurally robust at a wide range of pH values (3.8-10.0), the paclitaxel nanoparticle that only contained paclitaxel and apoA-I selectively released paclitaxel into the medium at low pH. The paclitaxel nanoparticle was stable at physiological and basic pH values, and over a wide range of temperatures, which is a required feature for efficient cancer chemotherapy. The homogeneous assembly enabled high paclitaxel loading per nanoparticle, which was 62.2% (w/w). The molar ratio of apolipoprotein A-I and paclitaxel was 1:55, suggesting that a single nanoparticle contained approximately 110 paclitaxel particles in a spherical structure with a 9.2 nm diameter. Among the several reconstitution methods applied, simple dilution following sonication enhanced the reconstitution yield of soluble paclitaxel nanoparticles, which was 0.66. As a result of the pH responsiveness, the anticancer effect of paclitaxel nanoparticles was much more potent than free paclitaxel or PTX-PL-NP. CONCLUSION: The anticancer efficacy of both paclitaxel nanoparticles and PTX-PL-NP was dependent on the expression of scavenger receptor class B type I, while the killing efficacy of free paclitaxel was independent of this receptor. We speculate that the pH responsiveness of paclitaxel nanoparticles enabled efficient endosomal escape of paclitaxel before lysosomal break down. This is the first report on pH-responsive nanoparticles that do not contain any synthetic polymer.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Nanopartículas/química , Paclitaxel/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apolipoproteína A-I/química , Apolipoproteína A-I/farmacocinética , Apolipoproteína A-I/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Estabilidade de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Conformação Molecular , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Tamanho da Partícula , Receptor ErbB-2/análise , Receptor ErbB-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia
19.
J Phys Chem A ; 116(14): 3527-33, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22409209

RESUMO

Recent experimental and theoretical studies on N-alkylated indanylidene pyrroline Schiff bases (NAIP) show that these compounds exhibit biomimetic photoisomerization analogous to that in the chromophore of rhodopsin. The NAIP compounds studied previously isomerize rapidly and often evolve coherently on the ground-electronic surface after reaction. We present the results of transient electronic absorption spectroscopy on dMe-OMe-NAIP, a newly synthesized NAIP analogue that differs from other NAIP compounds in the substituents on its pyrrolinium ring. Following excitation with 400 nm light, dMe-OMe-NAIP relaxes from the electronic-excited state in less than 500 fs, which is slower than in other analogues, and does not show the prominent oscillations observed in other NAIP compounds. A reduction in the amount of twisting between the rings caused by removal of the methyl group is likely responsible for the slower isomerization. Measurements in solvents of varying viscosity and structure suggest that intramolecular processes dominate the relaxation of nascent photoproducts.


Assuntos
Pirróis/química , Bases de Schiff/química , Biomimética , Elétrons , Isomerismo , Cinética , Luz , Estrutura Molecular , Processos Fotoquímicos , Espectroscopia Fotoeletrônica , Rodopsina/química , Solventes , Termodinâmica , Viscosidade
20.
Planta Med ; 78(3): 233-6, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22109835

RESUMO

Most cosmetic and therapeutic applications of Clostridium botulinum neurotoxin (BoNT) are related to muscle paralysis caused by the blocking of neurotransmitter release at the neuromuscular junction. BoNT specifically cleaves SNARE proteins at the nerve terminal and impairs neuroexocytosis. Recently, we have shown that several polyphenols inhibit neurotransmitter release from neuronal PC12 cells by interfering with SNARE complex formation. Based on our previous result, we report here that myricetin, delphinidin, and cyanidin indeed paralyze muscle by inhibiting acetylcholine release at the neuromuscular junction. While the effect of myricetin on muscle paralysis was modest compared to BoNT/A, myricetin exhibited a shorter response time than BoNT/A. Intraperitoneally-injected myricetin at an extreme dose of 1000 mg/kg did not induce death of mice, alleviating the safety issue. Thus, these polyphenols might be useful in treating various human hypersecretion diseases for which BoNT/A has been the only option of choice.


Assuntos
Toxinas Botulínicas Tipo A/farmacologia , Cosméticos/farmacologia , Bloqueadores Neuromusculares/farmacologia , Polifenóis/farmacologia , Proteínas SNARE/antagonistas & inibidores , Animais , Antocianinas/farmacologia , Feminino , Flavonoides/farmacologia , Humanos , Camundongos , Fitoterapia , Extratos Vegetais/farmacologia , Proteínas SNARE/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA