Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38400218

RESUMO

This paper presents a method for accurately estimating the natural frequencies of bridges by simultaneously measuring the acceleration vibration data of vehicles and bridges and applying modal analysis theory. Vibration sensors synchronized with GPS timing were installed on both vehicles and bridges, achieving stable and high-precision time synchronization. This enabled the computation of the bridge's Frequency Response Functions (FRFs) for each mode, leading to a refined estimation of natural frequencies. The validity of the theory was confirmed through numerical simulations and experimental tests. The simulations confirmed its effectiveness, and similar trends were observed in actual bridge measurements. Consequently, this method significantly enhances the feasibility of bridge health monitoring systems. The proposed method is suitable for road bridges with spans ranging from short- to medium-span length, where the vehicle is capable of exciting the bridge.

2.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850605

RESUMO

The efficiency of vehicles and travel comfort are maintained by the effective management of road pavement conditions. Pavement conditions can be inspected at a low cost by drive-by monitoring technology. Drive-by monitoring technology is a method of collecting data from sensors installed on a running vehicle. This technique enables quick and low-cost inspections. However, most existing technologies assume that the vehicle runs at a constant speed. Therefore, this study devises a theoretical framework that estimates road unevenness without prior information about the vehicle's mechanical parameters even when the running speed changes. This paper also shows the required function of sensors for this scheme. The required ability is to collect the three-axis acceleration vibration and position data simultaneously. A field experiment was performed to examine the applicability of sensors with both functions to the proposed methods. Each sensor was installed on a bus in service in this field experiment. The vehicle's natural frequency estimated from the measured data ranges from 1 to 2 Hz, but the natural frequency estimated by the proposed method is 0.71 Hz. However, the estimated road unevenness does not change significantly with changes in the vehicle's estimated parameters. The results found that the accuracy of road unevenness estimation seems to be acceptable with the conventional method and the new method. Future work will include improving the algorithm and accuracy verification of the schemes.

3.
Sensors (Basel) ; 23(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617137

RESUMO

For infrastructures to be sustainable, it is essential to improve maintenance and management efficiency. Vibration-based monitoring methods are being investigated to improve the efficiency of infrastructure maintenance and management. In this paper, signals from acceleration sensors attached to vehicles traveling on bridges are processed. Methods have been proposed to individually estimate the modal parameters of bridges and road unevenness from vehicle vibrations. This study proposes a method to simultaneously estimate the mechanical parameters of the vehicle, bridge, and road unevenness with only a few constraints. Numerical validation examined the effect of introducing the Kalman filter on the accuracy of estimating the mechanical parameters of vehicles and bridges. In field tests, vehicle vibration, bridge vibration, and road unevenness were measured and verified, respectively. The road surface irregularities estimated by the proposed method were compared with the measured values, which were somewhat smaller than the measured values. Future studies are needed to improve the efficiency of vehicle vibration preprocessing and optimization methods and to establish a methodology for evaluating accuracy.

4.
Sensors (Basel) ; 22(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35591176

RESUMO

Maintaining bridges that support road infrastructure is critical to the economy and human life. Structural health monitoring of bridges using vibration includes direct monitoring and drive-by monitoring. Drive-by monitoring uses a vehicle equipped with accelerometers to drive over bridges and estimates the bridge's health from the vehicle vibration obtained. In this study, we attempt to identify the driving segments on bridges in the vehicle vibration data for the practical application of drive-by monitoring. We developed an in-vehicle sensor system that can measure three-dimensional behavior, and we propose a new problem of identifying the driving segment of vehicle vibration on a bridge from data measured in a field experiment. The "on a bridge" label was assigned based on the peaks in the vehicle vibration when running at joints. A supervised binary classification model using C-LSTM (Convolution-Long-Term Short Memory) networks was constructed and applied to data measured, and the model was successfully constructed with high accuracy. The challenge is to build a model that can be applied to bridges where joints do not exist. Therefore, future work is needed to propose a running label on bridges based on bridge vibration and extend the model to a multi-class model.


Assuntos
Condução de Veículo , Humanos , Memória de Longo Prazo , Vibração
5.
Genes Cells ; 24(3): 259-265, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30597729

RESUMO

Bacterial cells, including Escherichia coli and Bacillus subtilis, continuously elongate and divide. Although the cell width is maintained during cell cycle, the molecular mechanisms involved in its regulation remain unknown. MreB has been implicated to play a role in maintaining cell width. Several point mutations in mreB that affect cell width have been identified. The MreB protein forms clusters or polymers in the cell and moves along annular tracks perpendicular to the long axis. This rotation is coupled with peptidoglycan synthesis. Here, we focused on two MreB mutants, MreBA125V and MreBA174T . Cells producing MreBA125V and MreBA174T were thinner and thicker than WT cells, and MreBA125V and MreBA174T rotated faster and slower than WT MreB, respectively. We observed that the rotation rate correlated with the cell wall synthesis rate. Thus, we conclude that the velocity of MreB rotation also affects cell width, that is, the faster the MreB rotates, the thinner the cell width is.


Assuntos
Parede Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Rotação , Parede Celular/genética , Parede Celular/ultraestrutura , Escherichia coli , Proteínas de Escherichia coli/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA