Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 23184, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976372

RESUMO

A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (<300 nm) surrounding the larger grains (~15 µm). The metal/non-metal interstitial alloys are expected to open a new paradigm in commercial alloy design.

2.
Sci Rep ; 5: 16114, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26542897

RESUMO

Nanocomposites reinforced with nano-scale reinforcements exhibit excellent mechanical properties with low volume fraction of the reinforcement. For instance, only an addition of 0.7 vol.% few-layer graphene (FLG) into the pure titanium shows strength of ~1.5 GPa, obviously much superior to that of the monolithic titanium. The strengthening efficiency of composites is determined by several factors such as reinforcement geometrical/spatial characteristics and interfacial features between the matrix and the reinforcement. For the metal-matrix nanocomposites (MMNCs), since the nano-scale reinforcement has significantly high specific surface area, interfacial feature is more important and has to be clearly evaluated in understanding property of MMNCs. Although many researchers suggested the theoretical work using continuum mechanics in order to estimate the mechanical properties of the metallic composites, a clear determination has yet not to be proven by systematic experimental works. Here, we provide a new model to predict strength and stiffness of MMNCs based on quantitative analysis of efficiency parameters in which interface feature is strongly emphasized. To validate the model, we select multi-walled carbon nanotube (MWCNT) and FLG for reinforcement, and titanium (Ti) and aluminum (Al) for the matrix to modify bonding strength and specific surface area in the MMNCs.

3.
J Nanosci Nanotechnol ; 11(5): 4430-3, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21780470

RESUMO

White organic light-emitting diodes (WOLEDs) have drawn increasing attention due to their potential use in various applications such as solid-state lighting and backlight of liquid crystal displays and full-color OLEDs of red, green, and blue pixel. N,N'-dicabazolyl-3,5-benzene (mCP), the host material, was co-doped with Iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C2']-picolinate (FIrpic), which functions not only as phosphorescent sensitizer but also blue emitter, and (2Z,2'Z)-3,3'-[4,4"-bis (dimethylamino)-1,1':4',1"-terphenyl-2',5'-diyl]bis (2-phenylacrylonitrile) (ABCV-P), which is a red fluorescent material. The fabricated device structures were as follows: (device A) Indium tin oxide (ITO)/N,N'-bis-(1-naphyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB)/(mCP)/mCP:ABCV-P (1%)/4,7-diphenyl-1,10-phenanthroline (Bphen)/lithium quinolate (Liq)/aluminum (Al), (device B) ITO/NPB/mCP/mCP:FIrpic (8%)/Bphen/Liq/Al and (device C) ITO/NPB/mCP/mCP:FIrpic:ABCV-P (8%, 1%)/Bphen/Liq/Al, respectively. Phosphorescent FIrpic harvesting both singlet and triplet excitions not only emitted blue light but also transferred energy to fluorescent ABCV-P. The maximum luminance efficiency, external quantum efficiency, and luminance of white light device were measured to be 5.95 cd/A, 2.45% and 2500 cd/m2, respectively. The white device gave practically white light with the Commision Internationale de l'Eclairage (CIE(xy)) coordinate of (0.44, 0.49) which was close to warm white color (CIE(xy) = 0.45, 0.45).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA