Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8066, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38052834

RESUMO

Understanding the degradation mechanism of organic light-emitting diodes (OLED) is essential to improve device performance and stability. OLED failure, if not process-related, arises mostly from chemical instability. However, the challenges of sampling from nanoscale organic layers and interfaces with enough analytical information has hampered identification of degradation products and mechanisms. Here, we present a high-resolution diagnostic method of OLED degradation using an Orbitrap mass spectrometer equipped with a gas cluster ion beam to gently desorb nanometre levels of materials, providing unambiguous molecular information with 7-nm depth resolution. We chemically depth profile and analyse blue phosphorescent and thermally-activated delayed fluorescent (TADF) OLED devices at different degradation levels. For OLED devices with short operational lifetimes, dominant chemical degradation mainly relate to oxygen loss of molecules that occur at the interface between emission and electron transport layers (EML/ETL) where exciton distribution is maximised, confirmed by emission zone measurements. We also show approximately one order of magnitude increase in lifetime of devices with slightly modified host materials, which present minimal EML/ETL interfacial degradation and show the method can provide insight for future material and device architecture development.

2.
Nat Commun ; 14(1): 7508, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980350

RESUMO

Designing robust blue organic light-emitting diodes is a long-standing challenge in the display industry. The highly energetic states of blue emitters cause various degradation paths, leading to collective luminance drops in a competitive manner. However, a key mechanism of the operational degradation of organic light-emitting diodes has yet to be elucidated. Here, we show that electron-induced degradation reactions play a critical role in the short lifetime of blue organic light-emitting diodes. Our control experiments demonstrate that the operational lifetime of a whole device can only be explained when excitons and electrons exist together. We examine the atomistic mechanisms of the electron-induced degradation reactions by analyzing their energetic profiles using computational methods. Mass spectrometric analysis of aged devices further confirm the key mechanisms. These results provide new insight into rational design of robust blue organic light-emitting diodes.

3.
Phys Chem Chem Phys ; 24(36): 21995-21999, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36069412

RESUMO

Intramolecular charge transfer (ICT) plays a critical role in determining the photophysical properties of organic molecules, including their luminescence efficiencies. Twisted intramolecular charge transfer (TICT) is a process in which structural change accompanies ICT. Herein, we used time-resolved spectroscopy to study TICT in pyrene derivatives that are promising blue organic light emitting diode (OLED) emitter candidates; these derivatives show strong solvent-dependent charge-transfer (CT) behavior with unique fluorescence properties, increased fluorescence intensity in polar solvent. Slight structural changes that do not affect excited state dynamics were observed in nonpolar solvents, while polar solvents were found to affect excited state dynamics and CT characteristics, which affect their unusual fluorescence behavior. The TICT behavior of these pyrene derivatives can be modulated through structural modification. Our study provides valuable guidelines for the control of optical properties, including the luminescence efficiencies of OLED emitters that show TICT characteristics.

4.
J Am Geriatr Soc ; 67(12): 2605-2609, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31441514

RESUMO

OBJECTIVES: We aimed to validate a multi-sensor-based kiosk (automatically measured Short Physical Performance Battery [eSPPB] kiosk) that can perform automated measurement of the SPPB. DESIGN: Prospective, cross-sectional study. SETTING: Rehabilitation clinic of a tertiary-care hospital. PARTICIPANTS: Ambulatory outpatients, aged 65 years or older (N = 40). MEASUREMENTS: The eSPPB kiosk was developed to measure the three components of the SPPB: standing balance, gait speed, and chair stand test with embedded sensors and algorithms. Correlations between the total and component-specific scores of the eSPPB and manually measured SPPB (mSPPB), assessed by a physical therapist, were assessed. Further, correlations between SPPB parameters and geriatric functional measures were also evaluated. RESULTS: This study included 40 participants with a mean age of 74.4 ± 6.5 years, a mean total eSPPB score of 10.1 ± 2.1, and a mean total mSPPB score of 10.2 ± 2.1. The intraclass correlation coefficient between the eSPPB and mSPPB total score was 0.97 (P < .001), and the κ agreement was 0.79 (P < .001). The intraclass coefficients between the components of eSPPB and mSPPB were 0.77 (P < .001), 0.88 (P < .001), and 0.99 (P < .001) for standing balance, gait speed, and chair stand test, respectively. CONCLUSION: The newly developed kiosk might be a viable and efficient method for performing the SPPB in older adults. J Am Geriatr Soc 67:2605-2609, 2019.


Assuntos
Desempenho Físico Funcional , Equilíbrio Postural/fisiologia , Velocidade de Caminhada/fisiologia , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Hospitais de Ensino , Humanos , Vida Independente , Masculino , Estudos Prospectivos , Centros de Reabilitação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA