Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(52): e2313514120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109538

RESUMO

To cope with seasonal environmental changes, organisms have evolved approximately 1-y endogenous circannual clocks. These circannual clocks regulate various physiological properties and behaviors such as reproduction, hibernation, migration, and molting, thus providing organisms with adaptive advantages. Although several hypotheses have been proposed, the genes that regulate circannual rhythms and the underlying mechanisms controlling long-term circannual clocks remain unknown in any organism. Here, we show a transcriptional program underlying the circannual clock in medaka fish (Oryzias latipes). We monitored the seasonal reproductive rhythms of medaka kept under natural outdoor conditions for 2 y. Linear regression analysis suggested that seasonal changes in reproductive activity were predominantly determined by an endogenous program. Medaka hypothalamic and pituitary transcriptomes were obtained monthly over 2 y and daily on all equinoxes and solstices. Analysis identified 3,341 seasonally oscillating genes and 1,381 daily oscillating genes. We then examined the existence of circannual rhythms in medaka via maintaining them under constant photoperiodic conditions. Medaka exhibited approximately 6-mo free-running circannual rhythms under constant conditions, and monthly transcriptomes under constant conditions identified 518 circannual genes. Gene ontology analysis of circannual genes highlighted the enrichment of genes related to cell proliferation and differentiation. Altogether, our findings support the "histogenesis hypothesis" that postulates the involvement of tissue remodeling in circannual time-keeping.


Assuntos
Oryzias , Animais , Oryzias/genética , Estações do Ano , Ritmo Circadiano/fisiologia , Gônadas , Fotoperíodo
2.
Biochem Biophys Res Commun ; 676: 121-131, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37506473

RESUMO

Neonatal malnutrition is one of the most common causes of neurological disorders. However, the mechanism of action of the factors associated with neonatal nutrition in the brain remains unclear. In this study, we focused on fibroblast growth factor (FGF) 21 to elucidate the effects of malnutrition on the neonatal brain. FGF21 is an endocrine factor produced by the liver during lactation which is the main source of nutrition during the neonatal period. In this study, malnourishment during nursing mice induced decreased levels of Fgf21 mRNA in the liver and decreased levels of FGF21 in the serum. RNA-seq analysis of neonatal mouse brain tissue revealed that FGF21 controlled the expression of Kalrn-201 in the neonatal mouse brain. Kalrn-201 is a transcript of Kalirin, a Ras homologous guanine nucleotide exchange factor at the synapse. In mouse neurons, FGF21 induced the expression of Kalirin-7 (a Kalirin isoform) by down-regulating Kalrn-201. FGF21-induced Kalirin-7 stimulated neurite outgrowth in Neuro-2a cells. FGF21 also induced Growth hormone-releasing hormone (GHRH) expression in Neuro-2a cells. Kalirin-7 and GHRH expression induced by FGF21 was altered by inhibiting the activity of SH2-containing tyrosine phosphatase (SHP2) which is located downstream of the FGF receptor (FGFR). Additionally, malnourished nursing induced intron retention of the SHP2 gene (Ptpn11), resulting in the alteration of Kalirin-7 and GHRH expression by FGF21 signaling. Ptpn11 intron retention is suggested to be involved in regulating SHP2 activity. Taken together, these results suggest that FGF21 plays a critical role in the induction of neuronal neurite outgrowth and GHRH secretion in the neonatal brain, and this mechanism is regulated by SHP2. Thus, Ptpn11 intron retention induced by malnourished nursing may be involved in SHP2 activity.


Assuntos
Fatores de Crescimento de Fibroblastos , Desnutrição , Camundongos , Animais , Animais Recém-Nascidos , Fatores de Crescimento de Fibroblastos/metabolismo , Neurônios/metabolismo , Desnutrição/metabolismo , Crescimento Neuronal , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Encéfalo/metabolismo
3.
Zoological Lett ; 9(1): 16, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37480068

RESUMO

Seasonal changes are more robust and dynamic at higher latitudes than at lower latitudes, and animals sense seasonal changes in the environment and alter their physiology and behavior to better adapt to harsh winter conditions. However, the genetic basis for sensing seasonal changes, including the photoperiod and temperature, remains unclear. Medaka (Oryzias latipes species complex), widely distributed from subtropical to cool-temperate regions throughout the Japanese archipelago, provides an excellent model to tackle this subject. In this study, we examined the critical photoperiods and critical temperatures required for seasonal gonadal development in female medaka from local populations at various latitudes. Intraspecific differences in critical photoperiods and temperatures were detected, demonstrating that these differences were genetically controlled. Most medaka populations could perceive the difference between photoperiods for at least 1 h. Populations in the Northern Japanese group required 14 h of light in a 24 h photoperiod to develop their ovaries, whereas ovaries from the Southern Japanese group developed under 13 h of light. Additionally, Miyazaki and Ginoza populations from lower latitudes were able to spawn under short-day conditions of 11 and 10 h of light, respectively. Investigation of the critical temperature demonstrated that the Higashidori population, the population from the northernmost region of medaka habitats, had a critical temperature of over 18 °C, which was the highest critical temperature among the populations examined. The Miyazaki and the Ginoza populations, in contrast, were found to have critical temperatures under 14 °C. When we conducted a transplant experiment in a high-latitudinal environment using medaka populations with different seasonal responses, the population from higher latitudes, which had a longer critical photoperiod and a higher critical temperature, showed a slower reproductive onset but quickly reached a peak of ovarian size. The current findings show that low latitudinal populations are less responsive to photoperiodic and temperature changes, implying that variations in this responsiveness can alter seasonal timing of reproduction and change fitness to natural environments with varying harshnesses of seasonal changes. Local medaka populations will contribute to elucidating the genetic basis of seasonal time perception and adaptation to environmental changes.

4.
PLoS One ; 15(6): e0234803, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32544202

RESUMO

The genetic bases of growth and body weight are of economic and scientific interest, and teleost fish models have proven useful in such investigations. The Oryzias latipes species complex (medaka) is an abundant freshwater fish in Japan and suitable for genetic studies. We compared two wild medaka stocks originating from different latitudes. The Maizuru population from higher latitudes weighed more than the Ginoza population. We investigated the genetic basis of body weight, using quantitative trait locus (QTL) analysis of the F2 offspring of these populations. We detected one statistically significant QTL for body weight on medaka chromosome 4 and identified 12 candidate genes that might be associated with body weight or growth. Nine of these 12 genes had at least one single nucleotide polymorphism that caused amino acid substitutions in protein-coding regions, and we estimated the effects of these substitutions. The present findings might contribute to the marker-assisted selection of economically important aquaculture species.


Assuntos
Peso Corporal/genética , Variação Genética , Oryzias/genética , Sequência de Aminoácidos , Animais , Cromossomos/genética , Proteínas de Peixes/química , Proteínas de Peixes/genética , Oryzias/fisiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Alinhamento de Sequência
5.
Proc Natl Acad Sci U S A ; 117(17): 9594-9603, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32277035

RESUMO

Seasonal changes in the environment lead to depression-like behaviors in humans and animals. The underlying mechanisms, however, are unknown. We observed decreased sociability and increased anxiety-like behavior in medaka fish exposed to winter-like conditions. Whole brain metabolomic analysis revealed seasonal changes in 68 metabolites, including neurotransmitters and antioxidants associated with depression. Transcriptome analysis identified 3,306 differentially expressed transcripts, including inflammatory markers, melanopsins, and circadian clock genes. Further analyses revealed seasonal changes in multiple signaling pathways implicated in depression, including the nuclear factor erythroid-derived 2-like 2 (NRF2) antioxidant pathway. A broad-spectrum chemical screen revealed that celastrol (a traditional Chinese medicine) uniquely reversed winter behavior. NRF2 is a celastrol target expressed in the habenula (HB), known to play a critical role in the pathophysiology of depression. Another NRF2 chemical activator phenocopied these effects, and an NRF2 mutant showed decreased sociability. Our study provides important insights into winter depression and offers potential therapeutic targets involving NRF2.


Assuntos
Comportamento Animal/fisiologia , Depressão/metabolismo , Regulação da Expressão Gênica/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Oryzias/fisiologia , Estações do Ano , Animais , Dimetil Sulfóxido/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma , Mutação , Fator 2 Relacionado a NF-E2/genética
6.
PLoS One ; 14(9): e0222106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509560

RESUMO

At higher latitudes, vertebrates exhibit a seasonal cycle of reproduction in response to changes in day-length, referred to as photoperiodism. Extended day-length induces thyroid-stimulating hormone in the pars tuberalis of the pituitary gland. This hormone triggers the local activation of thyroid hormone in the mediobasal hypothalamus and eventually induces gonadal development. In avian species, light information associated with day-length is detected through photoreceptors located in deep-brain regions. Within these regions, the expressions of multiple photoreceptive molecules, opsins, have been observed. However, even though the Japanese quail is an excellent model for photoperiodism because of its robust and significant seasonal responses in reproduction, a comprehensive understanding of photoreceptors in the quail brain remains undeveloped. In this study, we initially analyzed an action spectrum using photoperiodically induced expression of the beta subunit genes of thyroid-stimulating hormone in quail. Among seven wavelengths examined, we detected maximum sensitivity of the action spectrum at 500 nm. The low value for goodness of fit in the alignment with a template of retinal1-based photopigment, assuming a spectrum associated with a single opsin, proposed the possible involvement of multiple opsins rather than a single opsin. Analysis of gene expression in the septal region and hypothalamus, regions hypothesized to be photosensitive in quail, revealed mRNA expression of a mammal-like melanopsin in the infundibular nucleus within the mediobasal hypothalamus. However, no significant diurnal changes were observed for genes in the infundibular nucleus. Xenopus-like melanopsin, a further isoform of melanopsin in birds, was detected in neither the septal region nor the infundibular nucleus. These results suggest that the mammal-like melanopsin expressed in the infundibular nucleus within the mediobasal hypothalamus could be candidate deep-brain photoreceptive molecule in Japanese quail. Investigation of the functional involvement of mammal-like melanopsin-expressing cells in photoperiodism will be required for further conclusions.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Coturnix/fisiologia , Opsinas de Bastonetes/genética , Tireotropina Subunidade beta/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/química , Coturnix/metabolismo , Regulação da Expressão Gênica , Masculino , Fotoperíodo
7.
Nat Ecol Evol ; 3(5): 845-852, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962562

RESUMO

To cope with seasonal environmental changes, animals adapt their physiology and behaviour in response to photoperiod. However, the molecular mechanisms underlying these adaptive changes are not completely understood. Here, using genome-wide expression analysis, we show that an uncharacterized long noncoding RNA (lncRNA), LDAIR, is strongly regulated by photoperiod in Japanese medaka fish (Oryzias latipes). Numerous transcripts and signalling pathways are activated during the transition from short- to long-day conditions; however, LDAIR is one of the first genes to be induced and its expression shows a robust daily rhythm under long-day conditions. Transcriptome analysis of LDAIR knockout fish reveals that the LDAIR locus regulates a gene neighbourhood, including corticotropin releasing hormone receptor 2, which is involved in the stress response. Behavioural analysis of LDAIR knockout fish demonstrates that LDAIR affects self-protective behaviours under long-day conditions. Therefore, we propose that photoperiodic regulation of corticotropin releasing hormone receptor 2 by LDAIR modulates adaptive behaviours to seasonal environmental changes.


Assuntos
RNA Longo não Codificante , Animais , Cruzamento , Perfilação da Expressão Gênica , Fotoperíodo , Estações do Ano
8.
Gen Comp Endocrinol ; 260: 171-174, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29288672

RESUMO

In temperate zones, organisms experience dynamic fluctuations in environment including changes in color. To cope with such seasonal changes in the environment, organisms adapt their physiology and behavior. Although color perception has been believed to be fixed throughout life, there is increasing evidence for the alteration in opsin gene expression induced by environmental stimuli in a number of animals. Very recently, dynamic seasonal plasticity in color perception has been reported in the seasonally breeding medaka fish. Interestingly, seasonal changes in human color perception have also been reported. Therefore, plasticity of color perception, induced by environmental stimuli, might be a common phenomenon across various species.


Assuntos
Percepção de Cores/fisiologia , Estações do Ano , Animais , Meio Ambiente , Expressão Gênica , Humanos , Plasticidade Neuronal/fisiologia , Opsinas/genética , Opsinas/metabolismo , Oryzias , Reprodução/fisiologia , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo
9.
Nat Commun ; 8(1): 412, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871081

RESUMO

To cope with seasonal changes in the environment, organisms adapt their physiology and behavior. Although color perception varies among seasons, the underlying molecular basis and its physiological significance remain unclear. Here we show that dynamic plasticity in phototransduction regulates seasonal changes in color perception in medaka fish. Medaka are active and exhibit clear phototaxis in conditions simulating summer, but remain at the bottom of the tank and fail to exhibit phototaxis in conditions simulating winter. Mate preference tests using virtual fish created with computer graphics demonstrate that medaka are more attracted to orange-red-colored model fish in summer than in winter. Transcriptome analysis of the eye reveals dynamic seasonal changes in the expression of genes encoding photopigments and their downstream pathways. Behavioral analysis of photopigment-null fish shows significant differences from wild type, suggesting that plasticity in color perception is crucial for the emergence of seasonally regulated behaviors.Animal coloration and behavior can change seasonally, but it is unclear if visual sensitivity to color shifts as well. Here, Shimmura et al. show that medaka undergo seasonal behavioral change accompanied by altered expression of opsin genes, resulting in reduced visual sensitivity to mates during winter-like conditions.


Assuntos
Adaptação Fisiológica , Percepção de Cores/fisiologia , Opsinas/metabolismo , Estações do Ano , Visão Ocular , Animais , Feminino , Regulação da Expressão Gênica , Masculino , Preferência de Acasalamento Animal , Plasticidade Neuronal , Oryzias , Fenótipo , Fotoperíodo , Fototaxia
10.
Artigo em Inglês | MEDLINE | ID: mdl-24600435

RESUMO

Organisms living outside the tropics measure the changes in the length of the day to adapt to seasonal changes in the environment. Animals that breed during spring and summer are called long-day breeders, while those that breed during fall are called short-day breeders. Although the influence of thyroid hormone in the regulation of seasonal reproduction has been known for several decades, its precise mechanism remained unknown. Recent studies revealed that the activation of thyroid hormone within the mediobasal hypothalamus plays a key role in this phenomenon. This localized activation of the thyroid hormone is controlled by thyrotropin (thyroid-stimulating hormone) secreted from the pars tuberalis of the pituitary gland. Although seasonal reproduction is a rate-limiting factor in animal production, genes involved in photoperiodic signal transduction pathway could emerge as potential targets to facilitate domestication.

11.
PLoS One ; 9(1): e86361, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466053

RESUMO

A mutation that confers white plumage with black eyes was identified in the Minohiki breed of Japanese native chicken (Gallus gallus domesticus). The white plumage, with a few partially pigmented feathers, was not associated with the tyrosinase gene, and displayed an autosomal recessive mode of inheritance against the pigmented phenotype. All F1 offspring derived from crosses with mottled chickens (mo/mo), which show characteristic pigmented feathers with white tips, had plumage with a mottled-like pattern. This result indicates that the white plumage mutation is a novel allele at the mo locus; we propose the gene symbol mo(w) for this mutant allele. Furthermore, the F1 hybrid between the mo(w) /mo(w) chicken and the panda (s/s) mutant of Japanese quail (Coturnix japonica), whose causative gene is the endothelin receptor B2 (EDNRB2) gene, showed a mo(w)/mo(w) chicken-like plumage, suggesting the possibility that the mutations in parental species are alleles of the same gene, EDNRB2. Nucleotide sequencing of the entire coding region of EDNRB2 revealed a non-synonymous G1008T substitution, which causes Cys244Phe amino acid substitution in exon 5 (which is part of the extracellular loop between the putative fourth and fifth transmembrane domains of EDNRB2) in the mutant chicken. This Cys244Phe mutation was also present in individuals of four Japanese breeds with white plumage. We also identified a non-synonymous substitution leading to Arg332His substitution that was responsible for the mottled (mo/mo) plumage phenotype. These results suggest that the EDN3 (endothelin 3)-EDNRB2 signaling is essential for normal pigmentation in birds, and that the mutations of EDNRB2 may cause defective binding of the protein with endothelins, which interferes with melanocyte differentiation, proliferation, and migration.


Assuntos
Proteínas Aviárias/genética , Galinhas/genética , Plumas/metabolismo , Pigmentação , Receptor de Endotelina B/genética , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas Aviárias/metabolismo , Sequência de Bases , Sítios de Ligação , Endotelinas/fisiologia , Feminino , Expressão Gênica , Masculino , Dados de Sequência Molecular , Fenótipo , Ligação Proteica , Receptor de Endotelina B/metabolismo , Análise de Sequência de DNA , Transdução de Sinais
12.
Genetics ; 190(2): 627-38, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22135351

RESUMO

During early development in vertebrates, pluripotent cells are generated from the neural crest and migrate according to their presumptive fate. In birds and mammals, one of the progeny cells, melanoblasts, generally migrate through a dorsolateral route of the trunk region and differentiate to melanocytes. However, Silky is an exceptional chicken in which numerous melanoblasts travel via a ventral pathway and disperse into internal organs. Finally, these ectopic melanocytes induce heavy dermal and visceral melanization known as Fibromelanosis (Fm). To identify the genetic basis of this phenotype, we confirmed the mode of inheritance of Fm as autosomal dominant and then performed linkage analysis with microsatellite markers and sequence-tagged site markers. Using 85 backcross progeny from crossing Black Minorca chickens (BM-C) with F(1) individuals between White Silky (WS) and BM-C Fm was located on 10.2-11.7 Mb of chicken chromosome 20. In addition, we noticed a DNA marker that all Silky chickens and the F(1) individuals showed heterozygous genotyping patterns, suggesting gene duplication in the Fm region. By quantitative real-time PCR assay, Silky line-specific gene duplication was detected as an ~130-kb interval. It contained five genes including endothelin 3 (EDN3), which encoded a potent mitogen for melanoblasts/melanocytes. EDN3 with another three of these duplicated genes in Silky chickens expressed almost twofold of those in BM-C. Present results strongly suggest that the increase of the expression levels resulting from the gene duplication in the Fm region is the trigger of hypermelanization in internal organs of Silky chickens.


Assuntos
Galinhas/genética , Endotelina-3/genética , Duplicação Gênica , Pigmentação/genética , Animais , Mapeamento Cromossômico , Cromossomos , Cruzamentos Genéticos , Variações do Número de Cópias de DNA , Feminino , Expressão Gênica , Ligação Genética , Masculino , Repetições de Microssatélites , Fenótipo , Vísceras/anatomia & histologia , Vísceras/metabolismo
13.
Mol Reprod Dev ; 76(2): 202-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18543284

RESUMO

Easy oocyte detection in living specimens benefits various developmental biology and environmental toxicology studies. One of the earliest markers of sex differentiation in medaka (Oryzias latipes) is oocyte development. Within the field of toxicology, a simple detection method for induced oocyte in the testis (testis-ova) as a result of endocrine disruption is necessary. In this study we produced transgenic medaka whose oocytes were labeled with fluorescent proteins using the regulatory region of the 42Sp50 gene, an isoform of polypeptide elongation 1-alpha. Short (201 nt) 5'- and 3'-flanking regions were sufficient for reporter gene expression. GFP expression was first observed in female germ cells approximately 5 days post-hatching. In the mature ovaries, germ cells showed such intense fluorescence that the fluorescence was observed from outside the body wall. In contrast, very faint fluorescence was observed in the mature testes. Testis-ova, oocytes artificially induced in the testes, were also labeled with GFP. These findings indicate through the use of transgenic medaka, that detection of female germ cells was straightforward and this transgenic medaka model proves useful for tracking female germ cells in developmental and toxicological studies.


Assuntos
Animais Geneticamente Modificados/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Gônadas/citologia , Oócitos/metabolismo , Oryzias/embriologia , Processos de Determinação Sexual , Animais , Animais Geneticamente Modificados/genética , Primers do DNA/genética , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Microscopia de Fluorescência , Oócitos/citologia , Oryzias/genética , Fator 1 de Elongação de Peptídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Genesis ; 46(12): 719-23, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18821592

RESUMO

The male sex-determining gene, DMY, of the medaka is considered to have arisen via gene duplication of DMRT1. In the medaka, both genes are expressed in Sertoli cell lineage cells, but their temporal expression patterns are quite different. DMY expression starts just before the sex-determining period, whereas DMRT1 expression occurs during the testicular differentiation period. To evaluate the alterations to the expression patterns of the DMRT1 genes after duplication, we analyzed the morphological gonadal sex differentiation processes and expression patterns of DMRT1 in Oryzias luzonensis and Oryzias mekongensis, which are closely related to the medaka but do not have DMY. Male-specific upregulation of DMRT1 in these two species occurred during the testicular differentiation period, similar to the case for DMRT1 in the medaka. These findings suggest that DMY acquired a novel temporal expression pattern after duplication and that this event played a critical role in the evolutionary process of this gene.


Assuntos
Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Oryzias/genética , Oryzias/metabolismo , Processos de Determinação Sexual , Testículo/fisiologia , Fatores de Transcrição/metabolismo , Animais , Masculino , Diferenciação Sexual/genética , Fatores de Transcrição/genética
15.
Proc Natl Acad Sci U S A ; 104(10): 3865-70, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17360444

RESUMO

Although the sex-determining gene SRY/Sry has been identified in mammals, homologues and genes that have a similar function have yet to be identified in nonmammalian vertebrates. Recently, DMY (the DM-domain gene on the Y chromosome) was cloned from the sex-determining region on the Y chromosome of the teleost fish medaka (Oryzias latipes). DMY has been shown to be required for the normal development of male individuals. In this study, we show that a 117-kb genomic DNA fragment that carries DMY is able to induce testis differentiation and subsequent male development in XX (genetically female) medaka. In addition, overexpression of DMY cDNA under the control of the CMV promoter also caused XX sex reversal. These results demonstrate that DMY is sufficient for male development in medaka and suggest that the functional difference between the X and Y chromosomes in medaka is a single gene. Our data indicate that DMY is an additional sex-determining gene in vertebrates.


Assuntos
Genes sry , Oryzias/genética , Processos de Determinação Sexual , Cromossomo X , Animais , Animais Geneticamente Modificados , Sequência de Bases , DNA Complementar/metabolismo , Feminino , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Regiões Promotoras Genéticas , Diferenciação Sexual
16.
J Exp Zool A Comp Exp Biol ; 305(10): 890-6, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16941651

RESUMO

The teleost fish, Oryzias curvinotus, is a closely related species to the medaka, Oryzias latipes, and both species have the DMY gene, which is required for male development in O. latipes. It suggests that the molecular function of the DMY gene and the following molecular events of sex differentiation are conserved between these two species. In the present study, we obtained interspecific hybrids between O. curvinotus and O. latipes and demonstrated sex-reversed XY females in the hybrids. The incidence of sex-reversed females in F1 XY hybrids between O. curvinotus females and O. latipes males, and hybrids between O. latipes females and O. curvinotus males were 21% and 100%, respectively. These results indicate that DMY does not always determine maleness in hybrid fish even though it is able to specify normal male development on its native genetic background and suggest that there are some differences between DMY(latipes) and DMY(curvinotus) alleles. Appearance of XY females in F1 hybrids also suggests that an autosomal or X-liked gene(s) from the maternal species interferes in the function of the paternal DMY gene in the male-determining process of the hybrid fish. These hybrid fish would supply a new experimental approach for investigating the genetic and molecular pathway of testis determination and differentiation.


Assuntos
Organismos Hermafroditas , Hibridização Genética , Oryzias/genética , Cromossomos Sexuais/genética , Processos de Determinação Sexual , Animais , Feminino , Genótipo , Gônadas/anatomia & histologia , Masculino , Fenótipo , Razão de Masculinidade
17.
Genetics ; 173(4): 2083-90, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16702419

RESUMO

The medaka, Oryzias latipes, has an XX/XY sex-determination mechanism. A Y-linked DM domain gene, DMY, has been isolated by positional cloning as a sex-determining gene in this species. Previously, we found 23 XY sex-reversed females from 11 localities by examining the genotypic sex of wild-caught medaka. Genetic analyses revealed that all these females had Y-linked gene mutations. Here, we aimed to clarify the cause of this sex reversal. To achieve this, we screened for mutations in the amino acid coding sequence of DMY and examined DMY expression at 0 days after hatching (dah) using densitometric semiquantitative RT-PCR. We found that the mutants could be classified into two groups. One contained mutations in the amino acid coding sequence of DMY, while the other had reduced DMY expression at 0 dah although the DMY coding sequence was normal. For the latter, histological analyses indicated that YwOurYwOur (YwOur, Y chromosome derived from an Oura XY female) individuals with the lowest DMY expression among the tested mutants were expected to develop into females at 0 dah. These results suggest that early testis development requires DMY expression above a threshold level. Mutants with reduced DMY expression may prove valuable for identifying DMY regulatory elements.


Assuntos
Genes Ligados ao Cromossomo Y/genética , Organismos Hermafroditas , Mutação , Oryzias/genética , Processos de Determinação Sexual , Cromossomo X/genética , Cromossomo Y/genética , Animais , Feminino , Masculino
18.
Zoolog Sci ; 21(10): 1015-8, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15514470

RESUMO

The sex-determining gene in Oryzias latipes and O. curvinotus has been proved to be DMY. Although O. curvinotus has the DMY gene on the Y chromosome which is homologous to the Y chromosome of O. latipes, the sex-determining mechanism of other Oryzias fishes has not been identified. In order to uncover the sex-determining mechanism of O. luzonensis and O. mekongensis, which are most closely related species to O. latipes and O. curvinotus, we analyzed the sex ratio of the progeny of sex-reversed fish. We were able to obtain sex-reversed males by the administration of methyltestosterone, and found that these yielded all-female offspring in both species. These results indicate that O. luzonensis and O. mekongensis have the XX-XY sex-determination system.


Assuntos
Organismos Hermafroditas , Oryzias/fisiologia , Cromossomos Sexuais/fisiologia , Processos de Determinação Sexual , Razão de Masculinidade , Animais , Estradiol/farmacologia , Gônadas/anatomia & histologia , Gônadas/efeitos dos fármacos , Técnicas Histológicas , Metiltestosterona/farmacologia , Filogenia
19.
Zoolog Sci ; 21(6): 613-9, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15226583

RESUMO

The medaka, Oryzias latipes, has an XX/XY sex determination mechanism. A Y-linked DM domain gene, DMY, has been isolated by positional cloning as a prime candidate for the sex-determining gene. Furthermore, the crucial role of DMY during male development was established by studying two wild-derived XY female mutants. In this study, to find new DMY and sex-determination related gene mutations, we conducted a broad survey of the genotypic sex (DMY-negative or DMY-positive) of wild fish. We examined 2274 wild-caught fish from 40 localities throughout Japan, and 730 fish from 69 wild stocks from Japan, Korea, China, and Taiwan. The phenotypic sex type agreed with the genotypic sex of most fish, while 26 DMY-positive (XY) females and 15 DMY-negative (XX) males were found from 13 and 8 localities, respectively. Sixteen XY sex-reversals from 11 localities were mated with XY males of inbred strains, and the genotypic and phenotypic sexes of the F(1) progeny were analyzed. All these XY sex-reversals produced XY females in the F(1) generation, and all F(1) XY females had the maternal Y chromosome. These results show that DMY is a common sex-determining gene in wild populations of O. latipes and that all XY sex-reversals investigated had a DMY or DMY-linked gene mutation.


Assuntos
Proteínas de Peixes/genética , Organismos Hermafroditas , Oryzias/fisiologia , Cromossomos Sexuais/genética , Processos de Determinação Sexual , Animais , Ásia , Cruzamentos Genéticos , Primers do DNA , Componentes do Gene , Genótipo , Mutação/genética , Oryzias/genética , Fenótipo , Reação em Cadeia da Polimerase , Análise para Determinação do Sexo
20.
Mech Dev ; 121(7-8): 647-58, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15210174

RESUMO

A large-scale mutagenesis screen was performed in Medaka to identify genes acting in diverse developmental processes. Mutations were identified in homozygous F3 progeny derived from ENU-treated founder males. In addition to the morphological inspection of live embryos, other approaches were used to detect abnormalities in organogenesis and in specific cellular processes, including germ cell migration, nerve tract formation, sensory organ differentiation and DNA repair. Among 2031 embryonic lethal mutations identified, 312 causing defects in organogenesis were selected for further analyses. From these, 126 mutations were characterized genetically and assigned to 105 genes. The similarity of the development of Medaka and zebrafish facilitated the comparison of mutant phenotypes, which indicated that many mutations in Medaka cause unique phenotypes so far unrecorded in zebrafish. Even when mutations of the two fish species cause a similar phenotype such as one-eyed-pinhead or parachute, more genes were found in Medaka than in zebrafish that produced the same phenotype when mutated. These observations suggest that many Medaka mutants represent new genes and, therefore, are important complements to the collection of zebrafish mutants that have proven so valuable for exploring genomic function in development.


Assuntos
Mutação , Organogênese/genética , Oryzias/genética , Animais , Olho/embriologia , Células Germinativas , Oryzias/embriologia , Fenótipo , Prosencéfalo/embriologia , Tolerância a Radiação/genética , Projetos de Pesquisa , Somitos , Timo/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA