Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Numer Method Biomed Eng ; 37(12): e3335, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32212324

RESUMO

This study develops a computational model of the braided stent for interpreting the mechanism of stent flattening during deployment into curved arteries. Stent wires are expressed using Kirchhoff's rod theory and their mechanical behavior is treated using a corotational beam formulation. The equation of motion of the braided stent is solved in a step-by-step manner using the resultant elastic force and mechanical interactions of wires with friction. Examples of braided-stent deployment into idealized arteries with various curvatures are numerically simulated. In cases of low curvature, the braided stent expands from a catheter by releasing the bending energy stored in stent wires, while incomplete expansion is found at both stent ends (ie, the fish-mouth phenomenon), where relatively little bending energy is stored. In cases of high curvature, much torsional energy is stored in stent wires locally in the midsection of the curvature and the bending energy for stent self-expansion is not fully released even after deployment, leading to stent flattening. These findings suggest that the mechanical state of the braided stent and its transition during deployment play an important role in the underlying mechanism of stent flattening. NOVELTY STATEMENT: This study developed a computational mechanical model of the braided stent for interpreting stent flattening, which is a critical issue observed during deployment into highly curved arteries. Mechanical behaviors of the stent wires are appropriately treated by corotational beam element formulation with considering multiple contacts. We conducted numerical examples of the stent deployment into curved arteries and found that the mechanical state of the braided stent during deployment associated with occurrences of the stent flattening. We believe this finding gives new insight into the mechanism of stent flattening and would advance the design of the stent and its deployment protocol.


Assuntos
Artérias , Stents , Simulação por Computador , Fenômenos Mecânicos , Desenho de Prótese
2.
Biomed Mater Eng ; 31(6): 373-380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33252062

RESUMO

BACKGROUND: The braided stent is a widely accepted endovascular treatment device consisting of woven metal wires. One of the unsolved issues for the braided stent is the stent flattening phenomena when deployed into highly curved arteries. Although a recent computational study highlighted that the mechanical state of the stent inside the catheter before the deployment plays an essential role in causing stent flattening, there is no experimental observation for the stent inside the curved catheter. OBJECTIVE: We investigated braided stent shapes in curved catheter tubes with various curvatures by micro-computed tomography (CT). METHODS: A braided stent was deployed into catheter tubes and set in rectangular cases with constant curvature. The three-dimensional shape of the stent was imaged by micro-CT, and its cross-sectional flatness was quantitatively assessed. RESULTS: Stent flattening occurred in cases of high curvatures of the outer side of the tube curvature, and the degree of flatness increased with increasing tube curvature. This demonstrates that stent flattening can be caused inside the highly curved catheter before deployment. CONCLUSIONS: This preliminary and first observational report provides new insight into the mechanism of stent flattening and emphasizes the importance of the geometrical and mechanical state of the stent inside the catheter.


Assuntos
Stents , Artérias , Catéteres , Estudos Transversais , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA