Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neuroimmunol ; 391: 578364, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718558

RESUMO

Metabolic disorders are associated with several neurodegenerative diseases. We previously identified C-X-C motif chemokine ligand 10 (CXCL10), also known as interferon gamma-induced protein 10 (IP-10), as a major contributor to the type I interferon response in microglial-mediated neuroinflammation. Therefore, we hypothesized FDA-approved metabolic disorder drugs that attenuate CXCL10 secretion may be repurposed as a treatment for neurodegenerative diseases. Screening, dose curves, and cytotoxicity assays in LPS-stimulated microglia yielded treprostinil (hypertension), pitavastatin (hyperlipidemia), and eplerenone (hypertension) as candidates that significantly reduced CXCL10 secretion (in addition to other pro-inflammatory mediators) without impacting cell viability. Altogether, these data suggest metabolic disorder drugs that attenuate CXCL10 as potential treatments for neurodegenerative disease through mitigating microglial-mediated neuroinflammation.


Assuntos
Quimiocina CXCL10 , Microglia , Doenças Neuroinflamatórias , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Quimiocina CXCL10/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Camundongos , Quinolinas/farmacologia , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Anti-Hipertensivos/farmacologia , Relação Dose-Resposta a Droga , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/toxicidade
2.
J Biol Chem ; 300(5): 107306, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38648940

RESUMO

Alzheimer's disease (AD) is the most common form of dementia defined by two key pathological characteristics in the brain, amyloid-ß (Aß) plaques and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. Microglia, the primary innate immune cells of the central nervous system (CNS), provide neuroprotection through Aß and tau clearance but may also be neurotoxic by promoting neuroinflammation to exacerbate Aß and tau pathogenesis in AD. Recent studies have demonstrated the importance of microglial utilization of nutrients and trace metals in controlling their activation and effector functions. Trace metals, such as zinc, have essential roles in brain health and immunity, and zinc dyshomeostasis has been implicated in AD pathogenesis. As a result of these advances, the mechanisms by which zinc homeostasis influences microglial-mediated neuroinflammation in AD is a topic of continuing interest since new strategies to treat AD are needed. Here, we review the roles of zinc in AD, including zinc activation of microglia, the associated neuroinflammatory response, and the application of these findings in new therapeutic strategies.


Assuntos
Doença de Alzheimer , Microglia , Zinco , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Microglia/metabolismo , Microglia/patologia , Humanos , Zinco/metabolismo , Animais , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Encéfalo/metabolismo , Encéfalo/patologia
3.
Sci Rep ; 13(1): 14800, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684405

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-ß (Aß) plaques followed by intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. An unrestrained immune response by microglia, the resident cells of the central nervous system (CNS), leads to neuroinflammation which can amplify AD pathology. AD pathology is also driven by metabolic dysfunction with strong correlations between dementia and metabolic disorders such as diabetes, hypercholesterolemia, and hypertriglyceridemia. Since elevated cholesterol and triglyceride levels appear to be a major risk factor for developing AD, we investigated the lipid metabolism transcriptome in an AD versus non-AD state using RNA-sequencing (RNA-seq) and microarray datasets from N9 cells and murine microglia. We identified 52 differentially expressed genes (DEG) linked to lipid metabolism in LPS-stimulated N9 microglia versus unstimulated control cells using RNA-seq, 86 lipid metabolism DEG in 5XFAD versus wild-type mice by microarray, with 16 DEG common between both datasets. Functional enrichment and network analyses identified several biological processes and molecular functions, such as cholesterol homeostasis, insulin signaling, and triglyceride metabolism. Furthermore, therapeutic drugs targeting lipid metabolism DEG found in our study were identified. Focusing on drugs that target genes associated with lipid metabolism and neuroinflammation could provide new targets for AD drug development.


Assuntos
Doença de Alzheimer , Hipercolesterolemia , Animais , Camundongos , Doença de Alzheimer/genética , Metabolismo dos Lipídeos , Microglia , Transcriptoma , Doenças Neuroinflamatórias , Triglicerídeos
4.
Porcine Health Manag ; 9(1): 7, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36782292

RESUMO

BACKGROUND: The 2017 Veterinary Feed Directive eliminated the use of medically important antibiotics for growth promotion of food animals; thus, alternative growth promoters are highly desirable by food animal producers to enhance animal health and reduce pathogen colonization, including the human foodborne pathogen Salmonella. ß(1-3)(1-6)-D-glucan (ß-glucan) is a soluble fiber with prebiotic characteristics; it has been shown to modulate immune and intestinal functions that strengthen swine resistance to health challenges such as bacterial infections when supplemented in the diets of growing pigs. The current study evaluated the effects of a ß-glucan product on gut microbial community structure as well as Salmonella shedding and intestinal colonization. RESULTS: Five-week-old pigs were fed a ß-glucan amended diet at 500 g/ton (n = 13) or a non-amended control diet (n = 14) for three weeks, followed by inoculation of the 27 pigs with 1 × 109 colony forming units of Salmonella enterica serovar Typhimurium strain UK1. While remaining on the respective diets, fecal samples collected at 2, 4, 7, and 16 days post-inoculation (dpi) were similar for Salmonella shedding counts between the two diets. At 16 dpi, Salmonella counts were significantly lower in the cecal contents of the ß-glucan-fed pigs (P = 0.0339) and a trend towards a reduction was observed in the Peyer's patches region of the ileum (P = 0.0790) compared to the control pigs. Pigs fed ß-glucan for three weeks exhibited an increase in members of the Clostridia class in their fecal microbial communities, and after inoculation with Salmonella, several potentially beneficial microorganisms were enriched in the microbiota of ß-glucan-fed pigs (Lactobacillus, Ruminococcaceae, Prevotellaceae, Veillonellaceae, Bifidobacterium and Olsenella). CONCLUSION: Administration of ß-glucan altered the swine gut microbiome and reduced Salmonella colonization in the cecal contents.

5.
Vet Microbiol ; 278: 109648, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36608625

RESUMO

Alternatives to antibiotics to improve animal performance, limit the negative impact of infectious disease, and/or reduce colonization with foodborne pathogens is a major focus of animal agricultural research. ß-glucans, a generally-recognized-as-safe (GRAS) product derived from various sources, are used in swine and can serve as both a prebiotic and/or stimulant of the immune system given the expression of ß-glucan receptors on immune cells. When supplied in the diet of nursery pigs, it is unclear how dietary additives, particularly those known to modulate immune status, impact immunogenicity and efficacy of mucosal-delivered vaccines. Salmonellosis is one of the most common bacterial foodborne infections in the United States, and consumption of contaminated pork is a major source of human infection. Reduction of foodborne Salmonella in pigs via vaccination is one strategy to reduce contamination risk and subsequently reduce human disease. We examined the ability of dietary ß-glucan to modulate fecal microbial diversity, and immunogenicity and efficacy of a mucosally-delivered, live-attenuated Salmonella vaccine during the nursery period. While dietaryß-glucan did modulate fecal alpha diversity, it did not alter the induction of peripheral Salmonella-specific IFN-γ secreting Tcells or Salmonella-specific IgA in oral fluids. In addition, vaccination reduced Salmonella enterica serovar Typhimurium fecal shedding and tissue colonization. Overall, addition of ß-glucan to the nursery diet of pigs impacted the microbiota but did not alter mucosal vaccine immunogenicity and efficacy.


Assuntos
Salmonelose Animal , Vacinas contra Salmonella , Doenças dos Suínos , beta-Glucanas , Suínos , Humanos , Animais , Imunogenicidade da Vacina , Salmonelose Animal/microbiologia , Dieta , Salmonella typhimurium , Vacinas Atenuadas , Doenças dos Suínos/microbiologia
6.
J Neuroimmunol ; 375: 578031, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708632

RESUMO

Interferons play a major role in microglial-mediated neuroinflammation in Alzheimer's disease (AD). We investigated the interferon transcriptome (AD versus non-AD) using N9 and murine microglia. We identified 64 interferon-related differentially expressed genes (DEG) in LPS-stimulated N9 microglia versus control cells, 26 DEG in microglia from 5XFAD versus wild-type mice, with 13 DEG common to both datasets. Network analyses identified potential key mediators (Cxcl10, Ifit3) of the interferon response in AD. Gene-drug interaction analysis identified therapeutics targeting interferon-related genes. These data characterize the microglial interferon response in AD, providing new targets and therapeutics directed towards interferon-related neuroinflammation in AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/genética , Interferons/genética , Microglia , Doenças Neuroinflamatórias , Transcriptoma , Camundongos Transgênicos , Modelos Animais de Doenças , Peptídeos beta-Amiloides/genética
7.
IBRO Neurosci Rep ; 13: 31-37, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35711243

RESUMO

Alzheimer's disease (AD) is a progressive neurological disorder, and increasing evidence suggests AD pathology is driven by metabolic dysfunction in the brain. Zinc is the second most abundant trace element found in the human body and is required by all living organisms. Zinc is used extensively in many biological processes, and alterations in zinc levels are implicated in the pathogenesis of numerous diseases, including AD. Since small fluctuations in brain zinc levels appear to effect AD progression, we investigated the zinc-related transcriptional responses in an AD versus non-AD state using microarray and RNA-sequencing (RNA-seq) datasets from cultured cells, mice, and humans. We identified 582 zinc-related differentially expressed genes (DEG) in human dorsolateral prefrontal cortex samples of late-onset AD (LOAD) versus non-AD controls, 146 zinc-related DEG in 5XFAD versus wild-type mice, and 95 zinc-related DEG in lipopolysaccharide (LPS)-stimulated N9 microglia versus unstimulated control cells, with 19 zinc-related DEG common to all three datasets. Of the 19 common DEG, functional enrichment and network analyses identified several biological processes and molecular functions, such as mRNA destabilization and nucleic acid binding, which may be important in neuroinflammation and AD development. Furthermore, therapeutic drugs targeting zinc-related DEG in the human dataset were identified. Taken together, these data provide insights into zinc utilization for gene transcription during AD progression which may further our understanding of AD pathogenesis and could identify new targets for therapeutic strategies targeted towards AD.

8.
Microbiol Spectr ; 10(3): e0220221, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35532355

RESUMO

Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen of concern because many isolates are multidrug-resistant (resistant to ≥3 antimicrobial classes) and metal tolerant. In this study, three in-feed additives were individually tested for their ability to reduce Salmonella I 4,[5],12:i:- shedding in swine: resistant potato starch (RPS), high amylose corn starch, and a fatty acid blend, compared with a standard control diet over 21 days. Only RPS-fed pigs exhibited a reduction in Salmonella fecal shedding, different bacterial community compositions, and different cecal short chain fatty acid (SCFA) profiles relative to control animals. Within the RPS treatment group, pigs shedding the least Salmonella tended to have greater cecal concentrations of butyrate, valerate, caproate, and succinate. Additionally, among RPS-fed pigs, several bacterial taxa (Prevotella_7, Olsenella, and Bifidobacterium, and others) exhibited negative relationships between their abundances of and the amount of Salmonella in the feces of their hosts. Many of these same taxa also had significant positive associations with cecal concentrations of butyrate, valerate, caproate, even though they are not known to produce these SCFAs. Together, these data suggest the RPS-associated reduction in Salmonella shedding may be dependent on the establishment of bacterial cross feeding interactions that result in the production of certain SCFAs. However, directly feeding a fatty acid mix did not replicate the effect. RPS supplementation could be an effective means to reduce multidrug-resistant (MDR) S. enterica serovar I 4,[5],12:i:- in swine, provided appropriate bacterial communities are present in the gut. IMPORTANCE Prebiotics, such as resistant potato starch (RPS), are types of food that help to support beneficial bacteria and their activities in the intestines. Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen that commonly resides in the intestines of pigs without disease, but can make humans sick if unintentionally consumed. Here we show that in Salmonella inoculated pigs, feeding them a diet containing RPS altered the colonization and activity of certain beneficial bacteria in a way that reduced the amount of Salmonella in their feces. Additionally, within those fed RPS, swine with higher abundance of these types of beneficial bacteria had less Salmonella I 4,[5],12:i:- in their feces. This work illustrates likely synergy between the prebiotic RPS and the presence of certain gut microorganisms to reduce the amount of Salmonella in the feces of pigs and therefore reduce the risk that humans will become ill with MDR Salmonella serovar I 4,[5],12:i:-.


Assuntos
Salmonelose Animal , Salmonella enterica , Solanum tuberosum , Doenças dos Suínos , Animais , Butiratos , Caproatos , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos Voláteis , Fezes/microbiologia , Prebióticos , Amido Resistente , Salmonella , Salmonelose Animal/microbiologia , Salmonelose Animal/prevenção & controle , Sorogrupo , Amido , Suínos , Doenças dos Suínos/microbiologia , Valeratos
9.
BMC Genomics ; 23(1): 183, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247975

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder and is the most common cause of late-onset dementia. Microglia, the primary innate immune cells of the central nervous system (CNS), have a complex role in AD neuropathology. In the initial stages of AD, microglia play a role in limiting pathology by removing amyloid-ß (Aß) by phagocytosis. In contrast, microglia also release pro-inflammatory cytokines and chemokines to promote neuroinflammation and exacerbate AD neuropathology. Therefore, investigating microglial gene networks could identify new targets for therapeutic strategies for AD. RESULTS: We identified 465 differentially expressed genes (DEG) in 5XFAD versus wild-type mice by microarray, 354 DEG in lipopolysaccharide (LPS)-stimulated N9 microglia versus unstimulated control cells using RNA-sequencing (RNA-seq), with 32 DEG common between both datasets. Analyses of the 32 common DEG uncovered numerous molecular functions and pathways involved in Aß phagocytosis and neuroinflammation associated with AD. Furthermore, multiplex ELISA confirmed the induction of several cytokines and chemokines in LPS-stimulated microglia. CONCLUSIONS: In summary, AD triggered multiple signaling pathways that regulate numerous genes in microglia, contributing to Aß phagocytosis and neuroinflammation. Overall, these data identified several regulatory factors and biomarkers in microglia that could be useful in further understanding AD neuropathology.


Assuntos
Doença de Alzheimer , Microglia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Fagocitose
10.
Front Cell Neurosci ; 14: 563446, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192310

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by amyloid-ß (Aß) plaques and the formation of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. In response to Aß and tau aggregates, microglia, the primary innate immune cells of the central nervous system (CNS), facilitate Aß and tau clearance and contribute to neuroinflammation that damages neurons. Microglia also perform a wide range of other functions, e.g., synaptic pruning, within the CNS that require a large amount of energy. Glucose appears to be the primary energy source, but microglia can utilize several other substrates for energy production including other sugars and ketone bodies. Recent studies have demonstrated that changes in the metabolic profiles of immune cells, including macrophages, are important in controlling their activation and effector functions. Additional studies have focused on the role of metabolism in neuron and astrocyte function while until recently microglia metabolism has been considerably less well understood. Considering many neurological disorders, such as neurodegeneration associated with AD, are associated with chronic inflammation and alterations in brain energy metabolism, it is hypothesized that microglial metabolism plays a significant role in the inflammatory responses of microglia during neurodegeneration. Here, we review the role of microglial immunometabolism in AD.

11.
Genes (Basel) ; 11(11)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33142960

RESUMO

Multidrug-resistant (MDR; resistance to >3 antimicrobial classes) Salmonella enterica serovar I 4,[5],12:i:- strains were linked to a 2015 foodborne outbreak from pork. Strain USDA15WA-1, associated with the outbreak, harbors an MDR module and the metal tolerance element Salmonella Genomic Island 4 (SGI-4). Characterization of SGI-4 revealed that conjugational transfer of SGI-4 resulted in the mobile genetic element (MGE) replicating as a plasmid or integrating into the chromosome. Tolerance to copper, arsenic, and antimony compounds was increased in Salmonella strains containing SGI-4 compared to strains lacking the MGE. Following Salmonella exposure to copper, RNA-seq transcriptional analysis demonstrated significant differential expression of diverse genes and pathways, including induction of at least 38 metal tolerance genes (copper, arsenic, silver, and mercury). Evaluation of swine administered elevated concentrations of zinc oxide (2000 mg/kg) and copper sulfate (200 mg/kg) as an antimicrobial feed additive (Zn+Cu) in their diet for four weeks prior to and three weeks post-inoculation with serovar I 4,[5],12:i:- indicated that Salmonella shedding levels declined at a slower rate in pigs receiving in-feed Zn+Cu compared to control pigs (no Zn+Cu). The presence of metal tolerance genes in MDR Salmonella serovar I 4,[5],12:i:- may provide benefits for environmental survival or swine colonization in metal-containing settings.


Assuntos
Resistência a Múltiplos Medicamentos/genética , Sequências Repetitivas Dispersas/genética , Salmonella enterica/genética , Animais , Antibacterianos/farmacologia , Surtos de Doenças/prevenção & controle , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Ilhas Genômicas/genética , Testes de Sensibilidade Microbiana/métodos , Carne de Porco , Sorogrupo , Suínos , Estados Unidos
12.
J Neuroinflammation ; 17(1): 280, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958021

RESUMO

Alzheimer's disease (AD) is a progressive, late-onset dementia with no effective treatment available. Recent studies suggest that AD pathology is driven by age-related changes in metabolism. Alterations in metabolism, such as placing patients on a ketogenic diet, can alter cognition by an unknown mechanism. One of the ketone bodies produced as a result of ketogenesis, ß-hydroxybutyrate (BHB), is known to inhibit NLRP3 inflammasome activation. Therefore, we tested if BHB inhibition of the NLRP3 inflammasome reduces overall AD pathology in the 5XFAD mouse model of AD. Here, we find BHB levels are lower in red blood cells and brain parenchyma of AD patients when compared with non-AD controls. Furthermore, exogenous BHB administration reduced plaque formation, microgliosis, apoptosis-associated speck-like protein containing a caspase recruitment domain (Asc) speck formation, and caspase-1 activation in the 5XFAD mouse model of AD. Taken together, our findings demonstrate that BHB reduces AD pathology by inhibiting NLRP3 inflammasome activation. Additionally, our data suggest dietary or pharmacological approaches to increase BHB levels as promising therapeutic strategies for AD.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Doença de Alzheimer/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Inflamassomos/antagonistas & inibidores , Ácido 3-Hidroxibutírico/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Feminino , Humanos , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
13.
Poult Sci ; 99(8): 4028-4033, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32731990

RESUMO

Consumption of contaminated poultry products, including chicken livers, is the main source of human campylobacteriosis and approximately 90% of human cases are caused by Campylobacter jejuni subsp. jejuni (C. jejuni). Recent culinary trends that favor undercooked chicken livers may be responsible for outbreaks. Turkey is an emerging human protein source, and poultry livers are commonly prepared in popular cuisine such as pâté. The mechanism of how Campylobacter disseminates to poultry liver tissue is unknown. We have previously demonstrated that certain strains of C. jejuni persistently colonize turkeys with the highest density in the ceca. Whether C. jejuni disseminates to the liver of turkeys following intestinal colonization is unknown. In this study, 45 D of hatch turkey poults were co-housed for 30 D. Five poults were euthanized to screen for Campylobacter colonization, and were free of detectable Campylobacter. The remaining 40 poults were randomly split into 2 rooms, with 20 poults per room. At 35 D of age, poults were inoculated by oral gavage with 1 × 106 cfu of C. jejuni isolate NCTC 11168 or mock-inoculated with sterile medium. Ten poults from each room were euthanized at 7 and 14 D post-inoculation (dpi), and cecal contents and livers were cultured and/or enriched for Campylobacter. Livers were harvested aseptically. The ceca of C. jejuni-inoculated poults were highly colonized at 7 and 14 dpi with approximately 108 cfu/mL of cecal contents. At 7 and 14 dpi, 3 and 5 of 10 liver samples were positive for C. jejuni culture (8.6 × 103 cfu/g of liver ± 4.43 × 103 and 5.10 × 103 cfu/g of liver ± 1.74 × 103), respectively. At 14 dpi, liver samples were cultured by enrichment, and 6 of 10 were positive for Campylobacter. Some liver samples may be below the limit of detection for direct plate culturing. These data determined that turkey liver is a potential reservoir of C. jejuni following intestinal colonization, and identified a potential food safety consideration when turkey liver is prepared for human or pet food consumption.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Fígado , Doenças das Aves Domésticas , Perus , Animais , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/patologia , Infecções por Campylobacter/veterinária , Campylobacter jejuni/isolamento & purificação , Fígado/microbiologia , Fígado/patologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/patologia , Distribuição Aleatória
14.
Appl Environ Microbiol ; 85(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530706

RESUMO

Salmonella spp. are estimated to cause 1.2 million cases of human foodborne illness each year in the United States, and pigs can often be asymptomatically colonized with Salmonella spp. (>50% of farms). Recent reports state that 18.3% of Salmonella enterica serovar Typhimurium isolates are resistant to ≥3 antimicrobial classes, and multidrug-resistant (MDR) strains are associated with an increased hospitalization rate and other complications. Chlortetracycline is commonly used in swine production to prevent/treat various diseases; therefore, chlortetracycline treatment of pigs unknowingly colonized with MDR Salmonella may have collateral effects on Salmonella spp. (and other gut bacteria). In this study, we determined the effect of in-feed chlortetracycline (400 g/ton) on shedding and colonization of pigs challenged with the MDR S Typhimurium strain DT104 (n = 11/group). We also assessed the impact on the fecal microbiota over the 12-day experimental period and on the ileum, cecum, and tonsil microbiota at 7 days postinoculation (dpi). In MDR S Typhimurium-inoculated pigs, chlortetracycline administration significantly increased fecal shedding at 2 dpi (+1.4 log10 CFU/g; P < 0.001) and enhanced tonsil colonization (+3.1 log10 CFU/g; P < 0.001). There were few major alterations detected in the gut or tonsillar microbiota of pigs treated with MDR S Typhimurium and/or chlortetracycline. The tonsillar transcriptome was largely unaffected despite increased colonization by MDR S Typhimurium following inoculation of the chlortetracycline-treated pigs. These results highlight the idea that chlortetracycline administration can enhance shedding and colonization of MDR S Typhimurium in pigs, which could increase the risk of environmental dissemination of MDR Salmonella strains.IMPORTANCESalmonella spp. are an important cause of foodborne illness in North America, and pork products are associated with sporadic cases and outbreaks of human salmonellosis. Isolates of Salmonella may be resistant to multiple antibiotics, and infections with multidrug-resistant (MDR) Salmonella spp. are more difficult to treat, leading to increased hospitalization rates. Swine operations commonly use antimicrobials, such as chlortetracycline, to prevent/treat infections, which may have collateral effects on pig microbial populations. Recently, we demonstrated that chlortetracycline induces the expression of genes associated with pathogenesis and invasion in MDR Salmonella enterica serovar Typhimurium in vitro In our current study, we show increased tonsillar colonization and fecal shedding of the MDR S Typhimurium strain DT104 from pigs administered chlortetracycline. Therefore, pigs unknowingly colonized with multidrug-resistant Salmonella spp. and receiving chlortetracycline for an unrelated infection may be at a greater risk for disseminating MDR Salmonella spp. to other pigs and to humans through environmental or pork product contamination.


Assuntos
Derrame de Bactérias/efeitos dos fármacos , Clortetraciclina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Tonsila Palatina/microbiologia , Salmonella enterica/efeitos dos fármacos , Ração Animal , Animais , Antibacterianos/farmacologia , Ceco/microbiologia , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Salmonelose Animal/prevenção & controle , Sorogrupo , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle
15.
Gene ; 676: 290-297, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30099024

RESUMO

MicroRNAs (miRNAs) are small, non-coding RNAs that regulate eukaryotic gene expression at the post-transcriptional level. In addition to their involvement in a variety of biological processes, miRNAs are implicated in the eukaryotic response to bacterial pathogens. The objective of this study was to identify miRNAs involved in the regulation of the porcine response to the human foodborne pathogen, Salmonella enterica serovar Typhimurium (S. Typhimurium). Differential expression analysis from the whole blood of pigs over a 7-day period following S. Typhimurium challenge identified 50 miRNAs, many of which are implicated in functional pathways associated with NF-κB signaling and apoptosis (e.g., ssc-let-7c, ssc-miR-21). Transcriptional analyses of whole blood mRNA identified the differential expression of several genes involved in NF-κB signaling and apoptosis (e.g., IL10, CBX4, TGFB2) whose mRNAs are predicted targets of miRNAs identified in our study. Overall, our data identified porcine miRNAs that are differentially expressed following S. Typhimurium challenge, thereby defining regulatory factors to target for controlling the porcine response to this human foodborne pathogen.


Assuntos
MicroRNAs/genética , NF-kappa B/metabolismo , Salmonelose Animal/genética , Salmonella typhimurium/patogenicidade , Doenças dos Suínos/microbiologia , Animais , Apoptose , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Transdução de Sinais , Suínos , Doenças dos Suínos/genética
16.
Foodborne Pathog Dis ; 15(5): 253-261, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29412766

RESUMO

Salmonella enterica serovar I 4,[5],12:i:- has emerged as a common nontyphoidal Salmonella serovar to cause human foodborne illness. An interesting trait of serovar I 4,[5],12:i:- is that it only expresses the fliC gene for bacterial motility (i.e., monophasic), while most Salmonella strains alternately express two flagellin genes (fliC and fljB). The goal of this study was to characterize the porcine response following inoculation with a multidrug-resistant (MDR) serovar I 4,[5],12:i:- isolate associated with a multistate pork outbreak to determine if the increased prevalence of serovar I 4,[5],12:i:- in swine is due to enhanced pathogenicity. Pigs were inoculated and subsequently evaluated for the ability of the isolate to colonize intestinal tissues, cause clinical symptoms, induce an immune response, and alter the fecal microbiota over a 7-day period. Pigs exhibited a significant increase in rectal temperature (fever) (p < 0.01) and fecal moisture content (diarrhea) (p < 0.05) at 2 days postinoculation (d.p.i.) compared with preinoculation (day 0). Serum analyses revealed significantly increased interferon-gamma (IFN-γ) levels at 2 (p ≤ 0.0001) and 3 (p < 0.01) d.p.i. compared with day 0, and antibodies against Salmonella lipopolysaccharide (LPS) were present in all pigs by 7 d.p.i. Serovar I 4,[5],12:i:- colonized porcine intestinal tissues and was shed in the feces throughout the 7-day study. Analysis of the 16S rRNA gene sequences demonstrated that the fecal microbiota was significantly altered following MDR serovar I 4,[5],12:i:- inoculation, with the largest shift observed between 0 and 7 d.p.i. Our data indicate that the pork outbreak-associated MDR serovar I 4,[5],12:i:- isolate induced transient clinical disease in swine and perturbed the gastrointestinal microbial community. The porcine response to MDR serovar I 4,[5],12:i:- is similar to previous studies with virulent biphasic Salmonella enterica serovar Typhimurium, suggesting that the absence of fljB does not substantially alter acute colonization or pathogenesis in pigs.


Assuntos
Farmacorresistência Bacteriana Múltipla , Flagelina/genética , Salmonelose Animal/imunologia , Salmonella typhimurium/isolamento & purificação , Doenças dos Suínos/microbiologia , Animais , Tipagem de Bacteriófagos , Surtos de Doenças , Fezes/microbiologia , Feminino , Microbiologia de Alimentos , Humanos , RNA Ribossômico 16S/genética , Carne Vermelha/microbiologia , Salmonelose Animal/epidemiologia , Salmonelose Animal/patologia , Salmonella typhimurium/genética , Sorogrupo , Suínos/microbiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/patologia , Estados Unidos/epidemiologia
17.
Front Vet Sci ; 4: 156, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993809

RESUMO

In recent years, multidrug-resistant (MDR) Salmonella enterica serovar Heidelberg (S. Heidelberg) has been associated with numerous human foodborne illness outbreaks due to consumption of poultry. For example, in 2011, an MDR S. Heidelberg outbreak associated with ground turkey sickened 136 individuals and resulted in 1 death. In response to this outbreak, 36 million pounds of ground turkey were recalled, one of the largest meat recalls in U.S. HISTORY: To investigate colonization of turkeys with an MDR S. Heidelberg strain isolated from the ground turkey outbreak, two turkey trials were performed. In experiment 1, 3-week-old turkeys were inoculated with 108 or 1010 CFU of the MDR S. Heidelberg isolate, and fecal shedding and tissue colonization were detected following colonization for up to 14 days. Turkey gene expression in response to S. Heidelberg exposure revealed 18 genes that were differentially expressed at 2 days following inoculation compared to pre-inoculation. In a second trial, 1-day-old poults were inoculated with 104 CFU of MDR S. Heidelberg to monitor transmission of Salmonella from inoculated poults (index group) to naive penmates (sentinel group). The transmission of MDR S. Heidelberg from index to sentinel poults was efficient with cecum colonization increasing 2 Log10 CFU above the inoculum dose at 9 days post-inoculation. This differed from the 3-week-old poults inoculated with 1010 CFU of MDR S. Heidelberg in experiment 1 as Salmonella fecal shedding and tissue colonization decreased over the 14-day period compared to the inoculum dose. These data suggest that young poults are susceptible to colonization by MDR S. Heidelberg, and interventions must target turkeys when they are most vulnerable to prevent Salmonella colonization and transmission in the flock. Together, the data support the growing body of literature indicating that Salmonella establishes a commensal-like condition in livestock and poultry, contributing to the asymptomatic carrier status of the human foodborne pathogen in our animal food supply.

18.
Clin Vaccine Immunol ; 24(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27806993

RESUMO

Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) is the etiological agent of Johne's disease in ruminants. Johne's disease is an important enteric infection causing large economic losses associated with infected herds. In an attempt to fight this infection, we created two novel live-attenuated vaccine candidates with mutations in sigH and lipN (pgsH and pgsN, respectively). Earlier reports in mice suggested these vaccines are promising candidates to fight Johne's disease in ruminants. In this study, we tested the performances of the two constructs as vaccine candidates using the goat model of Johne's disease. Both vaccines appeared to provide significant immunity to goats against challenge from wild-type M. paratuberculosis The pgsH and pgsN constructs showed a significant reduction in histopathological lesions and tissue colonization compared to nonvaccinated goats and those vaccinated with an inactivated vaccine. Unlike the inactivated vaccine, the pgsN construct was able to eliminate fecal shedding from challenged animals, a feature that is highly desirable to control Johne's disease in infected herds. Furthermore, strong initial cell-mediated immune responses were elicited in goats vaccinated with pgsN that were not demonstrated in other vaccine groups. Overall, the results indicate the potential use of live-attenuated vaccines to control intracellular pathogens, including M. paratuberculosis, and warrant further testing in cattle, the main target for Johne's disease control programs.


Assuntos
Vacinas Bacterianas/imunologia , Doenças das Cabras/prevenção & controle , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/prevenção & controle , Imunidade Adaptativa , Animais , Carga Bacteriana , Derrame de Bactérias , Vacinas Bacterianas/administração & dosagem , Feminino , Genes Bacterianos , Cabras , Histocitoquímica , Imunidade Celular , Masculino , Mutação , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/microbiologia , Paratuberculose/patologia , Resultado do Tratamento , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Fatores de Virulência/genética
19.
Arch Microbiol ; 198(6): 541-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27017337

RESUMO

Salmonella is a threat to public health due to consumption of contaminated food. Screening of a transposon library identified a unique mutant that was growth and host cell binding deficient. The objective of this study was to determine the functional role of glucosamine-6-phosphate synthase (GlmS) in the biology and pathogenesis of Salmonella. To examine this, we created a glmS mutant (ΔglmS) of Salmonella and examined the effect on cell envelope integrity, growth, metabolism, and pathogenesis. Our data indicated ΔglmS was defective in growth unless media were supplemented with D-glucosamine (D-GlcN). Examination of the bacterial cell envelope revealed that ΔglmS was highly sensitive to detergents, hydrophobic antibiotics, and bile salts compared to the wild type (WT). A release assay indicated that ΔglmS secreted higher amounts of ß-lactamase than the WT in culture supernatant fractions. Furthermore, ΔglmS was attenuated in cell culture models of Salmonella infection. Taken together, this study determined an important role for GlmS in the pathogenesis and biology of Salmonella.


Assuntos
Proteínas de Bactérias/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Salmonella enteritidis/genética , Salmonella enteritidis/patogenicidade , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Membrana Celular/fisiologia , Detergentes/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Humanos , Infecções por Salmonella/microbiologia , Salmonella enteritidis/enzimologia , Salmonella enteritidis/metabolismo , Virulência/genética
20.
Vaccine ; 33(51): 7262-7270, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26546738

RESUMO

Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) causes Johne's disease, a chronic enteric infection in ruminants with severe economic impact on the dairy industry in the USA and worldwide. Currently, available vaccines have limited protective efficacy against disease progression and does not prevent spread of the infection among animals. Because of their ability to elicit wide-spectrum immune responses, we adopted a live-attenuated vaccine approach based on a sigH knock-out strain of M. paratuberculosis (ΔsigH). Earlier analysis of the ΔsigH mutant in mice indicated their inadequate ability to colonize host tissues, unlike the isogenic wild-type strain, validating the role of this sigma factor in M. paratuberculosis virulence. In the present study, we evaluated the performance of the ΔsigH mutant compared to inactivated vaccine constructs in a vaccine/challenge model of murine paratuberculosis. The presented analysis indicated that ΔsigH mutant with or without QuilA adjuvant is capable of eliciting strong immune responses (such as interferon gamma-γ, IFN-γ) suggesting their immunogenicity and ability to potentially initiate effective vaccine-induced immunity. Following a challenge with virulent strains of M. paratuberculosis, ΔsigH conferred protective immunity as indicated by the reduced bacterial burden accompanied with reduced lesions in main body organs (liver, spleen and intestine) usually infected with M. paratuberculosis. More importantly, our data indicated better ability of the ΔsigH vaccine to confer protection compared to the inactivated vaccine constructs even with the presence of oil-adjuvant. Overall, our approach provides a rational basis for using live-attenuated mutant strains to develop improved vaccines that elicit robust immunity against this chronic infection.


Assuntos
Vacinas Bacterianas/imunologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Estruturas Animais/patologia , Animais , Carga Bacteriana , Vacinas Bacterianas/administração & dosagem , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Camundongos Endogâmicos C57BL , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculose/imunologia , Paratuberculose/patologia , Saponinas de Quilaia/administração & dosagem , Fator sigma/deficiência , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Virulência , Fatores de Virulência/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA