Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(15): 2094-2097, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294205

RESUMO

Dynamic M/P invertible helicity was successfully induced at a SiO2 surface immobilized with a dynamic helical trinuclear cobalt complex, [LCo3(NHMe2)6](OTf)3, using chiral ((R) or (S))-1-phenylethylamine. Solid-state CD spectra and theoretical calculations suggested that the fixation of the M/P helical complex on the surface via coordination interactions was the key factor of the induced chirality at the surface.

2.
J Phys Chem A ; 127(19): 4345-4353, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37146038

RESUMO

Inverse molecular design allows the optimization of molecules in chemical space and is promising for accelerating the development of functional molecules and materials. To design realistic molecules, it is necessary to consider geometric stability during optimization. In this work, we introduce an inverse design method that optimizes molecular properties by changing the chemical composition in the equilibrium geometry. The optimization algorithm of our recently developed molecular design method has been modified to allow molecular design for general properties at a low computational cost. The proposed method is based on quantum alchemy and does not require empirical data. We demonstrate the applicability and limitations of the present method in the optimization of the electric dipole moment and atomization energy in small chemical spaces for (BF, CO), (N2, CO), BN-doped benzene derivatives, and BN-doped butane derivatives. It was found that the optimality criteria scheme adopted for updating the molecular species yields faster convergence of the optimization and requires a less computational cost. Moreover, we also investigate and discuss the applicability of quantum alchemy to the electric dipole moment.

3.
Phys Chem Chem Phys ; 24(37): 22768-22777, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36111742

RESUMO

Molecules close to a metal nanoparticle (NP) have significantly different photophysical properties from those of the isolated one. In order to harness the potential of the molecule-NP system, appropriate design guidelines are required. Here, we propose an inverse design method of the optimal molecule-NP systems and incident electric field for desired photophysical properties. It is based on a gradient-based optimization search within the time-dependent quantum chemical description for the molecule and the continuum model for the metal NP. We designed the optimal molecule, relative molecule-NP spatial conformation, and incident electric field of a molecule-NP system to maximize the population transfer to the target electronic state of the molecule. The design results were presented and discussed. The present method is promising as the basis for designing molecule-NP systems and incident fields and accelerates discoveries of efficient molecular plasmonics systems.

4.
J Phys Chem Lett ; 13(36): 8620-8627, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36073988

RESUMO

The design of functional molecules is regarded as searching for molecules with desired functionalities in chemical space populated by candidate molecules. Considering the geometric stability of molecules during the search process is crucial for designing realistic molecules. Here, we propose a method for designing functional molecules by exploring chemical space while explicitly accounting for geometric stability based on computational quantum alchemy. The proposed design method allows the simultaneous prediction of functional molecule in the equilibrium structure and its target desired property in an inverse design fashion without preparing the molecular geometries and performing brute-force screening. The applicability of the design method is proven by obtaining molecules with the desired atomization and electronic energies in various chemical spaces: (BF, CO), (CH4, NH3), 18 BN-doped benzene derivatives, and 3.1 × 105 BN-doped phenanthrene derivatives.

5.
Nat Commun ; 13(1): 4288, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948553

RESUMO

Photoluminescent gold clusters are functionally variable chemical modules by ligand design. Chemical modification of protective ligands and introduction of different metals into the gold clusters lead to discover unique chemical and physical properties based on their significantly perturbed electronic structures. Here we report the synthesis of carbon-centered Au(I)-Ag(I) clusters with high phosphorescence quantum yields using N-heterocyclic carbene ligands. Specifically, a heterometallic cluster [(C)(AuI-L)6AgI2]4+, where L denotes benzimidazolylidene-based carbene ligands featuring N-pyridyl substituents, shows a significantly high phosphorescence quantum yield (Φ = 0.88). Theoretical calculations suggest that the carbene ligands accelerate the radiative decay by affecting the spin-orbit coupling, and the benzimidazolylidene ligands further suppress the non-radiative pathway. Furthermore, these clusters with carbene ligands are taken up into cells, emit phosphorescence and translocate to a particular organelle. Such well-defined, highly phosphorescent C-centered Au(I)-Ag(I) clusters will enable ligand-specific, organelle-selective phosphorescence imaging and dynamic analysis of molecular distribution and translocation pathways in cells.


Assuntos
Ouro , Metano , Ouro/química , Ligantes , Metano/análogos & derivados , Metano/química , Organelas
6.
Chem Asian J ; 16(3): 202-206, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300244

RESUMO

Porous crystals with well-defined active metal centers on the pore surface have high potential as heterogeneous metal catalysts. We have recently demonstrated that a porous molecular crystal, metal-macrocycle framework (MMF), catalyzes olefin migration reactions by photoactivation of its PdII Cl2 moieties exposed on the crystalline channel surface. Herein we report a mechanistic study of the photoinduced olefin migration reactions at the PdII active centers of MMF. Several experiments, including a deuterium scrambling study, revealed that olefin migration is catalyzed via an alkyl mechanism by in situ generated Pd-H species on the channel surface during photoirradiation. This proposed mechanism was further supported by DFT and ONIOM calculations.

7.
Phys Chem Chem Phys ; 21(36): 19755-19763, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31259349

RESUMO

The electronic states and photochemistry including nonradiative decay (NRD) and trans(E) → cis(Z) isomerization of methylcinnamate (MC) and its hydrogen-bonded complex with methanol have been investigated under jet-cooled conditions. S1(1nπ*) and S2(1ππ*) are directly observed in MC. This is the first direct observation of S1(1nπ*) in cinnamate derivatives. Surprisingly, the order of the energies between the nπ* and ππ* states is opposite to substituted cinnamates. TD-DFT and SAC-CI calculations support the observed result and show that the substitution to the benzene ring largely lowers the 1ππ* energy while the effect on 1nπ* is rather small. The S2(ππ*) state lifetime of MC is determined to be equal to or shorter than 10 ps, and the production of the transient T1 state is observed. The T1(ππ*) state is calculated to have a structure in which propenyl C[double bond, length as m-dash]C is twisted by 90°, suggesting the trans → cis isomerization proceeds via T1. The production of the cis isomer is confirmed by low-temperature matrix-isolated FTIR spectroscopy. The effect of H-bonding is examined for the MC-methanol complex. The S2 lifetime of MC-methanol is determined to be 180 ps, indicating that the H-bonding to the C[double bond, length as m-dash]O group largely prohibits the 1ππ* → 1nπ* internal conversion. This lifetime elongation in the methanol complex also describes well a higher fluorescence quantum yield of MC in methanol solution than in cyclohexane, while such a solvent dependence is not observed in para-substituted MC. Determination of the photochemical reaction pathways of MC and MC-methanol will help us to design photofunctional cinnamate derivatives.

8.
Nat Commun ; 10(1): 2455, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31165729

RESUMO

Artificial molecular switches and machines that enable the directional movements of molecular components by external stimuli have undergone rapid advances over the past several decades. Particularly, overcrowded alkene-based artificial molecular motors are highly attractive from the viewpoint of chirality switching during rotational steps. However, the integration of these molecular switches into solid-state devices is still challenging. Herein, we present an example of a solid-state spin-filtering device that can switch the spin polarization direction by light irradiation or thermal treatment. This device utilizes the chirality inversion of molecular motors as a light-driven reconfigurable spin filter owing to the chiral-induced spin selectivity effect. Through this device, we found that the flexibility at the molecular scale is essential for the electrodes in solid-state devices using molecular machines. The present results are beneficial to the development of solid-state functionalities emerging from nanosized motions of molecular switches.

9.
J Comput Chem ; 40(1): 127-134, 2019 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-30144120

RESUMO

Recently, exciton-controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) probe, which shows strong emission in the near-infrared region via hybridization to the target DNA and/or RNA strand, has been developed. In this work, photophysical properties of the chromophores of these probes and the fluorescent mechanism have been investigated by the SAC-CI and TD-DFT calculations. Three fluorescent cyanine chromophores whose excitation is challenging for TD-DFT methods, have been examined regarding the photo-absorption and emission spectra. The SAC-CI method well reproduces the experimental values with respect to transition energies, while the quantitative prediction by TD-DFT calculations is difficult for these chromophores. Some stable structures of H-aggregate system were computationally located and two of the configurations were examined for the photo-absorption. The present results support for the assumption based on experimental measurement in which strong fluorescence is due to the monomer unit in nearly planar structure and its suppression of probes is to the H-aggregates of two exciton units. Stokes shifts of these three chromophores were qualitatively reproduced by the theoretical calculations, while the energy splitting due to H-aggregate in the hybridized probe was slightly overestimated. © 2018 Wiley Periodicals, Inc.


Assuntos
Algoritmos , Teoria da Densidade Funcional , Corantes Fluorescentes/química , Ácidos Nucleicos/análise , Sondas de Oligonucleotídeos/química , Estrutura Molecular , Processos Fotoquímicos
10.
J Am Chem Soc ; 140(48): 16610-16614, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30407819

RESUMO

A nanosized confined space with well-defined functional surfaces has great potential to control the efficiency and selectivity of catalytic reactions. Herein we report that a 1,6-diene, which normally forms an intramolecular [2+2] cycloadduct under photoirradiation, preferentially undergoes a photoinduced olefin migration in a porous crystal, metal-macrocycle framework (MMF), and alternatively [2+2] cycloaddition is completely inhibited in the confined space. A plausible reaction mechanism for olefin migration triggered by the photoinduced dissociation of the Pd-Cl bond is suggested based on UV-vis diffuse reflectance spectroscopy, single-crystal XRD, and MS-CASPT2 calculation. The substrate scope of the photoinduced olefin migration in MMF was also examined using substituted allylbenzene derivatives.

11.
Phys Chem Chem Phys ; 20(26): 17583-17598, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29693100

RESUMO

An experimental and theoretical study has been carried out to elucidate the nonradiative decay (NRD) and trans(E) → cis(Z) isomerization from the S1 (1ππ*) state of structural isomers of hydroxy methylcinnamate (HMC); ortho-, meta- and para-HMC (o-, m- and p-HMC). A low temperature matrix-isolation Fourier Transform Infrared (FTIR) spectroscopic study revealed that all the HMCs are cis-isomerized upon UV irradiation. A variety of laser spectroscopic methods have been utilized for jet-cooled gas phase molecules to investigate the vibronic structure and lifetimes of the S1 state, and to detect the transient state appearing in the NRD process. In p-HMC, the zero-point level of the S1 state decays as quickly as 9 ps. A transient electronic state reported by Tan et al. (Faraday Discuss. 2013, 163, 321-340) was reinvestigated by nanosecond UV-tunable deep UV pump-probe spectroscopy and was assigned to the T1 state. For m- and o-HMC, the lifetime at the zero-point energy level of S1 is 10 ns and 6 ns, respectively, but it becomes substantially shorter at an excess energy higher than 1000 cm-1 and 600 cm-1, respectively, indicating the onset of NRD. Different from p-HMC, no transient state (T1) was observed in m- nor o-HMC. These experimental results are interpreted with the aid of TDDFT calculations by considering the excited-state reaction pathways and the radiative/nonradiative rate constants. It is concluded that in p-HMC, the trans → cis isomerization proceeds via a [trans-S1 → 1nπ* → T1 → cis-S0] scheme. On the other hand, in o- and m-HMC, the isomerization proceeds via a [trans-S1 → twisting along the C[double bond, length as m-dash]C double bond by 90° on S1 → cis-S0] scheme. The calculated barrier height along the twisting coordinate agrees well with the observed onset of the NRD channel for both o- and m-HMC.

12.
J Comput Chem ; 39(16): 931-935, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29384204

RESUMO

Recently, a method to calculate the absorption and circular dichroism (CD) spectra based on the exciton coupling has been developed. In this work, the method was utilized for the decomposition of the CD and circularly polarized luminescence (CPL) spectra of a multichromophoric system into chromophore contributions for recently developed through-space conjugated oligomers. The method which has been implemented using rotatory strength in the velocity form and therefore it is gauge-invariant, enables us to evaluate the contribution from each chromophoric unit and locally excited state to the CD and CPL spectra of the total system. The excitonic calculations suitably reproduce the full calculations of the system, as well as the experimental results. We demonstrate that the interactions between electric transition dipole moments of adjacent chromophoric units are crucial in the CD and CPL spectra of the multichromophoric systems, while the interactions between electric and magnetic transition dipole moments are not negligible. © 2018 Wiley Periodicals, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA