Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 15656, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123529

RESUMO

There is an urgent need to develop phage therapies for multidrug-resistant bacterial infections. However, although bacteria have been shown to be susceptible to phage therapy, phage therapy is not sufficient in some cases. PhiMR003 is a methicillin-resistant Staphylococcus aureus phage previously isolated from sewage influent, and it has demonstrated high lytic activity and a broad host range to MRSA clinical isolates in vitro. To investigate the potential of phiMR003 for the treatment of MRSA infection, the effects of phiMR003 on immune responses in vivo were analysed using phiMR003-susceptible MRSA strains in a mouse wound infection model. Additionally, we assessed whether phiMR003 could affect the immune response to infection with a nonsusceptible MRSA strain. Interestingly, wounds infected with both susceptible and nonsusceptible MRSA strains treated with phiMR003 demonstrated decreased bacterial load, reduced inflammation and accelerated wound closure. Moreover, the infiltration of inflammatory cells in infected tissue was altered by phiMR003. While the effects of phiMR003 on inflammation and bacterial load disappeared with heat inactivation of phiMR003. Transcripts of proinflammatory cytokines induced by lipopolysaccharide were reduced in mouse peritoneal macrophages. These results show that the immune modulation occurring as a response to the phage itself improves the clinical outcomes of phage therapy.


Assuntos
Bacteriófagos , Staphylococcus aureus Resistente à Meticilina , Animais , Citocinas/farmacologia , Imunidade , Inflamação , Lipopolissacarídeos/farmacologia , Camundongos , Esgotos
2.
Front Cell Infect Microbiol ; 12: 826738, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281442

RESUMO

The circadian rhythm is a biological system that creates daily variations of physiology and behavior with a 24-h cycle, which is precisely controlled by the molecular circadian clock. The circadian clock dominates temporal activity of physiological homeostasis at the molecular level, including endocrine secretion, metabolic, immune response, coupled with extrinsic environmental cues (e.g., light/dark cycles) and behavioral cues (e.g., sleep/wake cycles and feeding/fasting cycles). The other side of the clock is that the misaligned circadian rhythm contributes to the onset of a variety of diseases, such as cancer, metabolic diseases, and cardiovascular diseases, the acceleration of aging, and the development of systemic inflammation. The role played by macrophages is a key mediator between circadian disruption and systemic inflammation. At the molecular level, macrophage functions are under the direct control of the circadian clock, and thus the circadian misalignment remodels the phenotype of macrophages toward a 'killer' mode. Remarkably, the inflammatory macrophages induce systemic and chronic inflammation, leading to the development of inflammatory diseases and the dampened immune defensive machinery against infectious diseases such as COVID-19. Here, we discuss how the circadian clock regulates macrophage immune functions and provide the potential risk of misaligned circadian rhythms against inflammatory and infectious diseases.


Assuntos
COVID-19 , Relógios Circadianos , Infecções Respiratórias , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Humanos , Macrófagos
3.
Molecules ; 26(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684771

RESUMO

Excessive host inflammation following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with severity and mortality in coronavirus disease 2019 (COVID-19). We recently reported that the SARS-CoV-2 spike protein S1 subunit (S1) induces pro-inflammatory responses by activating toll-like receptor 4 (TLR4) signaling in macrophages. A standardized extract of Asparagus officinalis stem (EAS) is a unique functional food that elicits anti-photoaging effects by suppressing pro-inflammatory signaling in hydrogen peroxide and ultraviolet B-exposed skin fibroblasts. To elucidate its potential in preventing excessive inflammation in COVID-19, we examined the effects of EAS on pro-inflammatory responses in S1-stimulated macrophages. Murine peritoneal exudate macrophages were co-treated with EAS and S1. Concentrations and mRNA levels of pro-inflammatory cytokines were assessed using enzyme-linked immunosorbent assay and reverse transcription and real-time polymerase chain reaction, respectively. Expression and phosphorylation levels of signaling proteins were analyzed using western blotting and fluorescence immunomicroscopy. EAS significantly attenuated S1-induced secretion of interleukin (IL)-6 in a concentration-dependent manner without reducing cell viability. EAS also markedly suppressed the S1-induced transcription of IL-6 and IL-1ß. However, among the TLR4 signaling proteins, EAS did not affect the degradation of inhibitor κBα, nuclear translocation of nuclear factor-κB p65 subunit, and phosphorylation of c-Jun N-terminal kinase p54 subunit after S1 exposure. In contrast, EAS significantly suppressed S1-induced phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) and Akt. Attenuation of S1-induced transcription of IL-6 and IL-1ß by the MAPK kinase inhibitor U0126 was greater than that by the Akt inhibitor perifosine, and the effects were potentiated by simultaneous treatment with both inhibitors. These results suggest that EAS attenuates S1-induced IL-6 and IL-1ß production by suppressing p44/42 MAPK and Akt signaling in macrophages. Therefore, EAS may be beneficial in regulating excessive inflammation in patients with COVID-19.


Assuntos
Asparagus/química , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Asparagus/metabolismo , Butadienos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Interleucina-1beta/genética , Interleucina-6/genética , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Caules de Planta/química , Caules de Planta/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicoproteína da Espícula de Coronavírus/farmacologia , Receptor 4 Toll-Like/metabolismo , Transcrição Gênica/efeitos dos fármacos
4.
Heliyon ; 7(2): e06187, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33644468

RESUMO

Coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has now spread globally. Some patients develop severe complications including multiple organ failure. It has been suggested that excessive inflammation associated with the disease plays major role in the severity and mortality of COVID-19. To elucidate the inflammatory mechanisms involved in COVID-19, we examined the effects of SARS-CoV-2 spike protein S1 subunit (hereafter S1) on the pro-inflammatory responses in murine and human macrophages. Murine peritoneal exudate macrophages produced pro-inflammatory mediators in response to S1 exposure. Exposure to S1 also activated nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) signaling pathways. Pro-inflammatory cytokine induction by S1 was suppressed by selective inhibitors of NF-κB and JNK pathways. Treatment of murine peritoneal exudate macrophages and human THP-1 cell-derived macrophages with a toll-like receptor 4 (TLR4) antagonist attenuated pro-inflammatory cytokine induction and the activation of intracellular signaling by S1 and lipopolysaccharide. Similar results were obtained in experiments using TLR4 siRNA-transfected murine RAW264.7 macrophages. In contrast, TLR2 neutralizing antibodies could not abrogate the S1-induced pro-inflammatory cytokine induction in either RAW264.7 or THP-1 cell-derived macrophages. These results suggest that SARS-CoV-2 spike protein S1 subunit activates TLR4 signaling to induce pro-inflammatory responses in murine and human macrophages. Therefore, TLR4 signaling in macrophages may be a potential target for regulating excessive inflammation in COVID-19 patients.

5.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967199

RESUMO

Exercise training is well known to enhance adipocyte lipolysis in response to hormone challenge. However, the existence of a relationship between the timing of exercise training and its effect on adipocyte lipolysis is unknown. To clarify this issue, Wistar rats were run on a treadmill for 9 weeks in either the early part (E-EX) or late part of the active phase (L-EX). L-EX rats exhibited greater isoproterenol-stimulated lipolysis expressed as fold induction over basal lipolysis, with greater protein expression levels of hormone-sensitive lipase (HSL) phosphorylated at Ser 660 compared to E-EX rats. Furthermore, we discovered that Brain and muscle Arnt-like (BMAL)1 protein can associate directly with several protein kinase A (PKA) regulatory units (RIα, RIß, and RIIß) of protein kinase, its anchoring protein (AKAP)150, and HSL, and that the association of BMAL1 with the regulatory subunits of PKA, AKAP150, and HSL was greater in L-EX than in E-EX rats. In contrast, comparison between E-EX and their counterpart sedentary control rats showed a greater co-immunoprecipitation only between BMAL1 and ATGL. Thus, both E-EX and L-EX showed an enhanced lipolytic response to isoproterenol, but the mechanisms underlying exercise training-enhanced lipolytic response to isoproterenol were different in each group.


Assuntos
Isoproterenol/farmacologia , Lipólise/efeitos dos fármacos , Condicionamento Físico Animal , Esterol Esterase/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar
6.
Artigo em Inglês | MEDLINE | ID: mdl-30108645

RESUMO

We recently reported that ETAS 50, a standardized extract from the Asparagus officinalis stem, exerted anti-inflammatory effects on ultraviolet-B- (UV-B-) irradiated normal human dermal fibroblasts (NHDFs) by inhibiting nuclear factor-κB p65 nuclear import and the resulting interleukin-1ß (IL-1ß) expression. To further elucidate the antiphotoaging potency of ETAS 50, we examined the anti-inflammatory effects on UV-B-irradiated NHDFs by focusing on the stress-activated mitogen-activated protein kinase (MAPK) and Akt signaling pathways. NHDFs were treated with 1 mg/mL of ETAS 50 or dextrin (vehicle control) after UV-B irradiation (20 mJ/cm2) for different time periods. Phosphorylation levels of c-Jun N-terminal kinase (JNK), p38 MAPK, and Akt were analyzed by western blotting. IL-6 mRNA levels were analyzed by real-time polymerase chain reaction. UV-B-irradiated NHDFs showed increased phosphorylation levels of JNK, p38 MAPK, and Akt, as well as increased mRNA levels of IL-6. ETAS 50 treatment after UV-B irradiation suppressed the increased phosphorylation levels of Akt without affecting those of JNK and p38 MAPK. ETAS 50 as well as Akt inhibitor Perifosine repressed UV-B irradiation-induced IL-6 mRNA expression. These results suggest that ETAS 50 treatment represses UV-B irradiation-induced IL-6 expression by suppressing Akt phosphorylation. The present findings demonstrate the potential of ETAS 50 to prevent photoaging by attenuating UV-B irradiation-induced proinflammatory responses in skin fibroblasts.

7.
Environ Health Prev Med ; 23(1): 40, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30131067

RESUMO

BACKGROUND: Heat shock protein 70 (HSP70) exhibits protective effects against ultraviolet (UV)-induced premature skin aging. A standardized extract of Asparagus officinalis stem (EAS) is produced as a novel and unique functional food that induces HSP70 cellular expression. To elucidate the anti-photoaging potencies of EAS, we examined its effects on HSP70 expression levels in UV-B-irradiated normal human dermal fibroblasts (NHDFs). METHODS: NHDFs were treated with 1 mg/mL of EAS or dextrin (vehicle control) prior to UV-B irradiation (20 mJ/cm2). After culturing NHDFs for different time periods, HSP70 mRNA and protein levels were analyzed using real-time polymerase chain reaction and western blotting, respectively. RESULTS: UV-B-irradiated NHDFs showed reduced HSP70 mRNA levels after 1-6 h of culture, which were recovered after 24 h of culture. Treatment with EAS alone for 24 h increased HSP70 mRNA levels in the NHDFs, but the increase was not reflected in its protein levels. On the other hand, pretreatment with EAS abolished the UV-B irradiation-induced reduction in HSP70 expression at both mRNA and protein levels. These results suggest that EAS is capable to preserve HSP70 quantity in UV-B-irradiated NHDFs. CONCLUSIONS: EAS exhibits anti-photoaging potencies by preventing the reduction in HSP70 expression in UV-irradiated dermal fibroblasts.


Assuntos
Asparagus , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Proteínas de Choque Térmico HSP70/biossíntese , Extratos Vegetais/farmacologia , Raios Ultravioleta/efeitos adversos , Células Cultivadas , Feminino , Humanos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Telômero/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-29967648

RESUMO

Ultraviolet (UV) irradiation induces proinflammatory responses in skin cells, including dermal fibroblasts, accelerating premature skin aging (photoaging). ETAS 50, a standardized extract from the Asparagus officinalis stem, is a novel and unique functional food that suppresses proinflammatory responses of hydrogen peroxide-stimulated skin fibroblasts and interleukin- (IL-) 1ß-stimulated hepatocytes. To elucidate its antiphotoaging potencies, we examined whether ETAS 50 treatment after UV-B irradiation attenuates proinflammatory responses of normal human dermal fibroblasts (NHDFs). UV-B-irradiated NHDFs showed reduced levels of the cytosolic inhibitor of nuclear factor-κB α (IκBα) protein and increased levels of nuclear p65 protein. The nuclear factor-κB nuclear translocation inhibitor JSH-23 abolished UV-B irradiation-induced IL-1ß mRNA expression, indicating that p65 regulates transcriptional induction. ETAS 50 also markedly suppressed UV-B irradiation-induced increases in IL-1ß mRNA levels. Immunofluorescence analysis revealed that ETAS 50 retained p65 in the cytosol after UV-B irradiation. Western blotting also showed that ETAS 50 suppressed the UV-B irradiation-induced increases in nuclear p65 protein. Moreover, ETAS 50 clearly suppressed UV-B irradiation-induced distribution of importin-α protein levels in the nucleus without recovering cytosolic IκBα protein levels. These results suggest that ETAS 50 exerts anti-inflammatory effects on UV-B-irradiated NHDFs by suppressing the nuclear import machinery of p65. Therefore, ETAS 50 may prevent photoaging by suppressing UV irradiation-induced proinflammatory responses of dermal fibroblasts.

9.
J Nutr Sci Vitaminol (Tokyo) ; 64(2): 138-142, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29710031

RESUMO

Enzyme-treated asparagus extract (ETAS) is prepared from the lower, residual parts of asparagus, and some functionalities, such as anti-oxidative and neuroprotective activities, have been suggested. The purpose of the present study was to investigate the effects of ETAS on photoaging in the epidermal layer of the skin using cultured keratinocytes. Normal human epidermal keratinocytes were irradiated or left unirradiated with UV-B (10 mJ/cm2) and incubated with ETAS (0.5 or 2 mg/mL) or vehicle. After 3 or 13 h, molecular examinations were performed, and after 24 or 48 h, cell viabilities were determined by a CCK-8 assay. ETAS addition may induce keratinocyte migration and proliferation as well as apoptosis under molecular examination. These results suggest that ETAS might accelerate turnover of keratinocytes.


Assuntos
Asparagus , Epiderme/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Raios Ultravioleta , Apoptose , Asparagus/metabolismo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Células Epidérmicas , Epiderme/fisiologia , Epiderme/efeitos da radiação , Humanos , Queratinócitos/fisiologia , Queratinócitos/efeitos da radiação , Fitoterapia , Envelhecimento da Pele/efeitos da radiação
10.
Oxid Med Cell Longev ; 2017: 9410954, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28168013

RESUMO

Obesity-induced inflammatory changes in white adipose tissue (WAT), which caused dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein-1, contribute to the development of insulin resistance. Moreover, current literature reports state that WAT generates reactive oxygen species (ROS), and the enhanced production of ROS in obese WAT has been closely associated with the dysregulated expression of adipokines in WAT. Therefore, the reduction in excess WAT and oxidative stress that results from obesity is thought to be one of the important strategies in preventing and improving lifestyle-related diseases. Exercise training (TR) not only brings about a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the adipokines in WAT. Furthermore, some reports indicate that TR affects the generation of oxidative stress in WAT. This review outlines the impact of TR on the expression of inflammation-related adipokines and oxidative stress in WAT.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo Branco/metabolismo , Exercício Físico/fisiologia , Humanos , Inflamação/metabolismo , Estresse Oxidativo
11.
BMJ Open ; 7(1): e013810, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28110288

RESUMO

OBJECTIVE: Approximately 8-10% of newborns with asymptomatic congenital cytomegalovirus (cCMV) infection develop sensorineural hearing loss (SNHL). However, the relationship between CMV load, SNHL and central nervous system (CNS) damage in cCMV infection remains unclear. This study aimed to examine the relationship between urinary CMV load, SNHL and CNS damage in newborns with cCMV infection. STUDY DESIGN: The study included 23 368 newborns from two maternity hospitals in Saitama Prefecture, Japan. Urine screening for cCMV infection (quantitative real-time PCR) and newborn hearing screening (automated auditory brainstem response (AABR) testing) were conducted within 5 days of birth to examine the incidence of cCMV infection and SNHL, respectively. CNS damage was assessed by MRI of cCMV-infected newborns. RESULTS: The incidence of cCMV infection was 60/23 368 (0.257%; 95% CI 0.192% to 0.322%). The geometric mean urinary CMV DNA copy number in newborns with cCMV was 1.79×106 copies/mL (95% CI 7.97×105 to 4.02×106). AABR testing revealed abnormalities in 171 of the 22 229 (0.769%) newborns whose parents approved hearing screening. Of these 171 newborns, 22 had SNHL (12.9%), and 5 of these 22 were infected with cCMV (22.7%). Newborns with both cCMV and SNHL had a higher urinary CMV DNA copy number than newborns with cCMV without SNHL (p=0.036). MRI revealed CNS damage, including white matter abnormalities, in 83.0% of newborns with cCMV. Moreover, newborns with CNS damage had a significantly greater urinary CMV load than newborns without CNS damage (p=0.013). CONCLUSIONS: We determined the incidence of cCMV infection and urinary CMV DNA copy number in seemingly healthy newborns from two hospitals in Saitama Prefecture. SNHL and CNS damage were associated with urinary CMV DNA copy number. Quantification of urinary CMV load may effectively predict the incidence of late-onset SNHL and neurodevelopmental disorders.


Assuntos
Sistema Nervoso Central/anormalidades , Infecções por Citomegalovirus/diagnóstico , Citomegalovirus , DNA Viral/urina , Perda Auditiva Neurossensorial , Audição , Triagem Neonatal , Sistema Nervoso Central/virologia , Anormalidades Congênitas/urina , Anormalidades Congênitas/virologia , Citomegalovirus/genética , Citomegalovirus/crescimento & desenvolvimento , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/epidemiologia , Infecções por Citomegalovirus/virologia , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Perda Auditiva Neurossensorial/epidemiologia , Perda Auditiva Neurossensorial/etiologia , Perda Auditiva Neurossensorial/virologia , Humanos , Incidência , Recém-Nascido , Japão/epidemiologia , Imageamento por Ressonância Magnética , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Substância Branca
12.
Mediators Inflamm ; 2017: 9290416, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28133422

RESUMO

Moderate-intensity regular exercise improves proinflammatory responses of lipopolysaccharide- (LPS-) stimulated macrophages. However, intracellular events that mediate the beneficial effects of exercise were unclear. This study aimed to clarify the mechanism by which regular voluntary exercise (VE) improves proinflammatory cytokine production by macrophages challenged with LPS. Peritoneal macrophages from VE mice secreted considerably higher amounts of interleukin- (IL-) 1ß and IL-18 than did cells from sedentary control (SC) mice in the presence and absence of LPS, although tumor necrosis factor-α and IL-10 secretion were comparable between both groups. The mRNA levels of these cytokines increased significantly in response to LPS; similar levels were noted in macrophages from both SC and VE mice. Moreover, LPS evoked similar levels of degradation of inhibitor of κB (IκB) α and phosphorylation of IκB kinase ß, c-Jun N-terminal kinase, and p38 in macrophages from SC and VE mice. These results indicate that the increased IL-1ß and IL-18 secretion in VE mice are regulated posttranscriptionally. On the other hand, macrophages from VE mice showed higher amounts of caspase-1 protein than did cells from SC mice. These results suggest that regular VE potentiates IL-1ß and IL-18 secretion in LPS-challenged macrophages by increasing caspase-1 levels.


Assuntos
Caspase 1/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Animais , Células Cultivadas , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Condicionamento Físico Animal , Serpinas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Virais/farmacologia
13.
Nat Prod Commun ; 11(5): 677-80, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27319149

RESUMO

Enzyme-treated asparagus extract (ETAS) exerts a wide variety of beneficial biological actions including facilitating anti-cortisol stress and neurological anti-aging responses. However, the anti-skin aging effects of ETAS remain to be elucidated. Reactive oxygen species (ROS) play pivotal roles in skin aging. Increased ROS levels in fibroblasts in response to ultraviolet irradiation activate c-Jun N-terminal kinase (JNK) and its downstream transcription factor activator protein-1 (AP-1), and the resultant gene expression of matrix metalloproteinase (MMP) isoforms accelerates collagen breakdown in the dermis. Therefore, we explored whether ETAS has anti-skin aging effects by attenuating the oxidative stress responses in fibroblasts. Simultaneous treatment of murine skin L929 fibroblasts with hydrogen peroxide (H2O2) and either ETAS or dextrin showed that ETAS significantly suppressed H2O2-induced expression of MMP-9 mRNA as measured by real-time polymerase chain reaction. ETAS also clearly suppressed H2O2-stimulated phosphorylation of c-Jun (AP-1 subunit) and JNK as determined by Western blot. However, ETAS did not affect the increased amounts of carbonyl proteins in response to H2O2, also as determined by Western blotting. These results suggest that ETAS diminishes cellular responsiveness to ROS but does not scavenge ROS. Thus, ETAS has the potential to prevent skin aging through attenuating the oxidative stress responses in dermal fibroblasts.


Assuntos
Asparagus , Fibroblastos/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Extratos Vegetais/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Animais , Linhagem Celular , Fibroblastos/metabolismo , Peróxido de Hidrogênio , Camundongos , Fitoterapia
14.
Nat Prod Commun ; 11(12): 1883-1888, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30508357

RESUMO

We recently reported that enzyme-treated asparagus extract (ETAS) attenuates hydrogen peroxide (H(2)0(2))-stimulated matrix metalloproteinase-9 expression in skin fibroblast L929 cells. To further elucidate the anti-aging effects of ETAS on skin, we examined whether ETAS has preventive effects on H202-induced pro-inflammatory responses of skin fibroblasts. H(2)0(2) induced Ser536 phosphorylation and nuclear accumulation of nuclear factor-κB (NF-κB) p65, and increased the mRNA levels .of interleukin-12α (IL-12α)-and inducible nitric oxide synthase (iNOS) in L929 cells. Pretreatment of the cells with JSH-23, an inhibitor of NF-κB nuclear translocation, abolished the H(2)(0(2)-induced expression of IL-12α and iNOS, indicating that the increased transcription is regulated by p65. The H(2)0(2)-stimulated nuclear accumulation of p65 and-induction of IL12a and iNOS mRNA were significantly attenuated after pretreatment with ETAS for 3 h, and these responses were completely abolished when the duration was extended to 24 h. However, ETAS did not affect the H(2)0(2)-stimulated degradation of IκBα and phosphorylation of p65. On the other hand, ETAS treatment for 24 h resulted in decreased protein levels of importin-α. These results suggest that ETAS prevents pro-inflammatory responses by suppressing the p65 nuclear translocation in skin fibroblasts induced by H202.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Asparagus/química , Fibroblastos/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Fibroblastos/metabolismo , Peróxido de Hidrogênio/toxicidade , Camundongos , Pele/citologia , Sacarase/química , Fator de Transcrição RelA/antagonistas & inibidores
15.
Biochem Biophys Res Commun ; 464(1): 348-53, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26141235

RESUMO

It is widely accepted that lipolysis in adipocytes are regulated through the enzymatic activation of both hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) via their phosphorylation events. Accumulated evidence shows that habitual exercise training (HE) enhances the lipolytic response in primary white adipocytes with changes in the subcellular localization of lipolytic molecules. However, no study has focused on the effect that HE exerts on the phosphorylation of both HSL and ATGL in primary white adipocytes. It has been shown that the translocation of HSL from the cytosol to lipid droplet surfaces requires its phosphorylation at Ser-563. In primary white adipocytes obtained from HE rats, the level of HSL and ATGL proteins was higher than that in primary white adipocytes obtained from sedentary control (SC) rats. In HE rats, the level of phosphorylated ATGL and HSL was also significantly elevated compared with that in SC rats. These differences were confirmed by Phos-tag SDS-PAGE, a technique used to measure the amount of total phosphorylated proteins. Our results suggest that HE can consistently increase the activity of both lipases, thereby enhancing the lipolysis in white fat cells. Thus, HE helps in the prevention and treatment of obesity-related diseases by enhancing the lipolytic capacity.


Assuntos
Adipócitos Brancos/enzimologia , Lipase/metabolismo , Obesidade/prevenção & controle , Condicionamento Físico Animal , Esterol Esterase/metabolismo , Adipócitos Brancos/citologia , Animais , Ativação Enzimática , Regulação da Expressão Gênica , Lipase/genética , Gotículas Lipídicas/metabolismo , Lipólise/genética , Masculino , Fosforilação , Cultura Primária de Células , Transporte Proteico , Ratos , Ratos Wistar , Esterol Esterase/genética
16.
J Obes ; 2015: 473430, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075089

RESUMO

Physical exercise accelerates the mobilization of free fatty acids from white adipocytes to provide fuel for energy. This happens in several tissues and helps to regulate a whole-body state of metabolism. Under these conditions, the hydrolysis of triacylglycerol (TG) that is found in white adipocytes is known to be augmented via the activation of these lipolytic events, which is referred to as the "lipolytic cascade." Indeed, evidence has shown that the lipolytic responses in white adipocytes are upregulated by continuous exercise training (ET) through the adaptive changes in molecules that constitute the lipolytic cascade. During the past few decades, many lipolysis-related molecules have been identified. Of note, the discovery of a new lipase, known as adipose triglyceride lipase, has redefined the existing concepts of the hormone-sensitive lipase-dependent hydrolysis of TG in white adipocytes. This review outlines the alterations in the lipolytic molecules of white adipocytes that result from ET, which includes the molecular regulation of TG lipases through the lipolytic cascade.


Assuntos
Adaptação Fisiológica/genética , Adipócitos Brancos/metabolismo , Exercício Físico , Ácidos Graxos não Esterificados/metabolismo , Lipólise/genética , Obesidade/prevenção & controle , Triglicerídeos/metabolismo , Regulação da Expressão Gênica , Humanos , Obesidade/genética , Fosforilação
17.
Crit Rev Immunol ; 35(4): 261-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26757391

RESUMO

Circadian rhythms have long been known to regulate numerous physiological processes that vary across the diurnal cycle. The circadian clock system also controls various parameters of the immune system and its biological defense functions, allowing an organism to anticipate daily changes in activity and feeding and the associated risk of infection. Inflammation is an immune response triggered in living organisms in response to external stimuli. The risk of sepsis, an excessive inflammatory response, has been shown to have a diurnal variation. On the other hand, inflammatory responses are emerging to be induced by endogenous factors. Recent studies have suggested that chronic inflammation causes chronic diseases including rheumatoid arthritis, allergies, and aging-related diseases and that proteins encoded by clock genes affect the development of such chronic inflammatory diseases or increase the severity of their symptoms. Therefore, detailed understanding of circadian rhythm effects on inflammatory responses is expected to lead to new strategies for prevention or treatment of inflammatory diseases.


Assuntos
Doenças Autoimunes/fisiopatologia , Ritmo Circadiano/imunologia , Hipersensibilidade/fisiopatologia , Sistema Imunitário , Inflamação/imunologia , Animais , Humanos , Imunidade
18.
ScientificWorldJournal ; 2014: 685854, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25401152

RESUMO

It is now evident that many nuclear hormone receptors can modulate target gene expression. REV-ERBα, one of the nuclear hormone receptors with the capacity to alter clock function, is critically involved in lipid metabolism, adipogenesis, and the inflammatory response. Recent studies suggest that REV-ERBα plays a key role in the mediation between clockwork and inflammation. The purpose of the current study was to investigate the role of REV-ERBα in the regulation of interleukin-6 (il6) gene expression in murine macrophages. REV-ERBα agonists, or overexpression of rev-erb α in the murine macrophage cell line RAW264 cells, suppressed the induction of il6 mRNA following a lipopolysaccharide (LPS) endotoxin challenge. Also, rev-erb α overexpression decreased LPS-stimulated nuclear factor κB (NFκB) activation in RAW264 cells. We showed that REV-ERBα represses il6 expression not only indirectly through an NFκB binding motif but also directly through a REV-ERBα binding motif in the murine il6 promoter region. Furthermore, peritoneal macrophages from mice lacking rev-erb α increased il6 mRNA expression. These data suggest that REV-ERBα regulates the inflammatory response of macrophages through the suppression of il6 expression. REV-ERBα may therefore be identified as a potent anti-inflammatory receptor and be a therapeutic target receptor of inflammatory diseases.


Assuntos
Regulação da Expressão Gênica , Interleucina-6/antagonistas & inibidores , Interleucina-6/biossíntese , Macrófagos Peritoneais/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Linhagem Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/fisiologia , Ligação Proteica/fisiologia
19.
Int J Inflam ; 2014: 292986, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24808968

RESUMO

The intensities of macrophage inflammatory responses to bacterial components gradually decrease with age. Given that a reduced rate of protein synthesis is a common age-related biochemical change, which is partially mediated by increased phosphorylation of eukaryotic initiation factor-2 α (eIF-2 α ), we investigated the mechanism responsible for the deterioration of macrophage inflammatory responses, focusing specifically on the age-related biochemical changes in middle-aged mice. Peritoneal macrophages isolated from 2-month-old (young) and 12-month-old (middle-aged) male BALB/c mice were stimulated with lipopolysaccharide (LPS). Although LPS-stimulated secretion of tumor necrosis factor- α (TNF- α ) by the macrophages from middle-aged mice was significantly lower than that from young mice, LPS caused marked increases in levels of TNF- α mRNA in macrophages from middle-aged as well as young mice. Moreover, LPS evoked similar levels of phosphorylation of c-Jun N-terminal kinase (JNK) and nuclear factor- κ B (NF- κ B) in young and middle-aged mice. In contrast, the basal level of phosphorylated eIF-2 α in macrophages from middle-aged mice was higher than that in macrophages from young mice. Salubrinal, an inhibitor of the phosphatase activity that dephosphorylates eIF-2 α , suppressed the LPS-stimulated inflammatory responses in a murine macrophage cell line RAW264.7. These results suggest that posttranscriptional suppression of macrophage inflammatory responses during middle age requires phosphorylation of eIF-2 α .

20.
J Toxicol Sci ; 38(6): 879-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24213007

RESUMO

The acute effects of oral administration of diallyl disulfide (DADS), the major organosulfur compound of garlic, on plasma glucose and free fatty acid (FFA) concentrations were examined in rats. Male, 10-week-old Sprague-Dawley rats were divided into DADS-free and DADS-administered (dose = 10, 20, and 40 mg/kg body weight [BW]) groups. Plasma samples were prepared from whole blood drawn from the tail vein 0, 1, 2, 4, and 6 hr after administration. The stomachs were isolated, and the contents were measured 8 hr after administration. In DADS-administered groups, plasma glucose concentrations were increased in a dose-dependent manner 1 hr after the administration. The increase was transient, except in groups administered 40 mg/kg BW of DADS, in which plasma glucose levels remained significantly higher than the DADS-free levels throughout the experimental period. Similar patterns were observed in the plasma FFA concentrations, although the significant differences were lower than those observed in the plasma glucose concentrations. The gastric contents were dose-dependently elevated after DADS administration. The increase was significant when 20 or 40 mg/kg BW of DADS was administered. These results suggest that oral administration of DADS can mobilize energy substrates into the blood, although a higher dose of DADS slows gastric emptying.


Assuntos
Compostos Alílicos/administração & dosagem , Compostos Alílicos/farmacologia , Glicemia/metabolismo , Dissulfetos/administração & dosagem , Dissulfetos/farmacologia , Ácidos Graxos não Esterificados/sangue , Alho/química , Administração Oral , Compostos Alílicos/metabolismo , Animais , Dissulfetos/metabolismo , Relação Dose-Resposta a Droga , Esvaziamento Gástrico/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA