Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 366(6462): 221-226, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31601766

RESUMO

Although crystals of strongly correlated metals exhibit a diverse set of electronic ground states, few approaches exist for spatially modulating their properties. In this study, we demonstrate disorder-free control, on the micrometer scale, over the superconducting state in samples of the heavy-fermion superconductor CeIrIn5 We pattern crystals by focused ion beam milling to tailor the boundary conditions for the elastic deformation upon thermal contraction during cooling. The resulting nonuniform strain fields induce complex patterns of superconductivity, owing to the strong dependence of the transition temperature on the strength and direction of strain. These results showcase a generic approach to manipulating electronic order on micrometer length scales in strongly correlated matter without compromising the cleanliness, stoichiometry, or mean free path.

2.
Nat Commun ; 9(1): 3975, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266902

RESUMO

Unusual behavior in quantum materials commonly arises from their effective low-dimensional physics, reflecting the underlying anisotropy in the spin and charge degrees of freedom. Here we introduce the magnetotropic coefficient k = ∂2F/∂θ2, the second derivative of the free energy F with respect to the magnetic field orientation θ in the crystal. We show that the magnetotropic coefficient can be quantitatively determined from a shift in the resonant frequency of a commercially available atomic force microscopy cantilever under magnetic field. This detection method enables part per 100 million sensitivity and the ability to measure magnetic anisotropy in nanogram-scale samples, as demonstrated on the Weyl semimetal NbP. Measurement of the magnetotropic coefficient in the spin-liquid candidate RuCl3 highlights its sensitivity to anisotropic phase transitions and allows a quantitative comparison to other thermodynamic coefficients via the Ehrenfest relations.

3.
Nature ; 548(7667): 313-317, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28783723

RESUMO

Electronic nematic materials are characterized by a lowered symmetry of the electronic system compared to the underlying lattice, in analogy to the directional alignment without translational order in nematic liquid crystals. Such nematic phases appear in the copper- and iron-based high-temperature superconductors, and their role in establishing superconductivity remains an open question. Nematicity may take an active part, cooperating or competing with superconductivity, or may appear accidentally in such systems. Here we present experimental evidence for a phase of fluctuating nematic character in a heavy-fermion superconductor, CeRhIn5 (ref. 5). We observe a magnetic-field-induced state in the vicinity of a field-tuned antiferromagnetic quantum critical point at Hc ≈ 50 tesla. This phase appears above an out-of-plane critical field H* ≈ 28 tesla and is characterized by a substantial in-plane resistivity anisotropy in the presence of a small in-plane field component. The in-plane symmetry breaking has little apparent connection to the underlying lattice, as evidenced by the small magnitude of the magnetostriction anomaly at H*. Furthermore, no anomalies appear in the magnetic torque, suggesting the absence of metamagnetism in this field range. The appearance of nematic behaviour in a prototypical heavy-fermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be common among correlated materials.

4.
Phys Rev Lett ; 116(10): 107202, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27015507

RESUMO

We present evidence for nuclear spin-lattice relaxation driven by glassy nematic fluctuations in isovalent P-doped BaFe_{2}As_{2} single crystals. Both the ^{75}As and ^{31}P sites exhibit a stretched-exponential relaxation similar to the electron-doped systems. By comparing the hyperfine fields and the relaxation rates at these sites we find that the As relaxation cannot be explained solely in terms of magnetic spin fluctuations. We demonstrate that nematic fluctuations couple to the As nuclear quadrupolar moment and can explain the excess relaxation. These results suggest that glassy nematic dynamics are a common phenomenon in the iron-based superconductors.

5.
Phys Rev Lett ; 111(20): 207201, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24289706

RESUMO

We present 75As nuclear magnetic resonance data from measurements of a series of Ba(Fe(1-x)Co(x))2As2 crystals with 0.00≤x≤0.075 that reveals the coexistence of frozen antiferromagnetic domains and superconductivity for 0.060≤x≤0.071. Although bulk probes reveal no long range antiferromagnetic order beyond x=0.06, we find that the local spin dynamics reveal no qualitative change across this transition. The characteristic domain sizes vary by more than an order of magnitude, reaching a maximum variation at x=0.06. This inhomogeneous glassy dynamics may be an intrinsic response to the competition between superconductivity and antiferromagnetism in this system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA