Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Gen Physiol ; 155(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37191672

RESUMO

Connexin-43 (Cx43) is the most abundant protein forming gap junction channels (GJCs) in cardiac ventricles. In multiple cardiac pathologies, including hypertrophy and heart failure, Cx43 is found remodeled at the lateral side of the intercalated discs of ventricular cardiomyocytes. Remodeling of Cx43 has been long linked to spontaneous ventricular arrhythmia, yet the mechanisms by which arrhythmias develop are still debated. Using a model of dystrophic cardiomyopathy, we previously showed that remodeled Cx43 function as aberrant hemichannels (non-forming GJCs) that alter cardiomyocyte excitability and, consequently, promote arrhythmias. Here, we aim to evaluate if opening of remodeled Cx43 can serve as a general mechanism to alter cardiac excitability independent of cellular dysfunction associated with a particular cardiomyopathy. To address this issue, we used a genetically modified Cx43 knock-in mouse (S3A) that promotes cardiac remodeling of Cx43 protein without apparent cardiac dysfunction. Importantly, when S3A mice were subjected to cardiac stress using the ß-adrenergic agonist isoproterenol (Iso), they displayed acute and severe arrhythmias, which were not observed in WT mice. Pretreatment of S3A mice with the Cx43 hemichannel blocker, Gap19, prevented Iso-induced abnormal electrocardiographic behavior. At the cellular level, when compared with WT, Iso-treated S3A cardiomyocytes showed increased membrane permeability, greater plasma membrane depolarization, and Ca2+ overload, which likely caused prolonged action potentials, delayed after depolarizations, and triggered activity. All these cellular dysfunctions were also prevented by Cx43 hemichannel blockers. Our results support the notion that opening of remodeled Cx43 hemichannels, regardless of the type of cardiomyopathy, is sufficient to mediate cardiac-stress-induced arrhythmogenicity.


Assuntos
Cardiomiopatias , Conexina 43 , Camundongos , Animais , Conexina 43/genética , Conexina 43/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Arritmias Cardíacas/metabolismo , Junções Comunicantes , Canais Iônicos/metabolismo , Isoproterenol
2.
Am J Physiol Heart Circ Physiol ; 323(5): H983-H995, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206047

RESUMO

Dilated cardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD), an inherited degenerative disease of the cardiac and skeletal muscle caused by absence of the protein dystrophin. We showed one hallmark of DMD cardiomyopathy is the dysregulation of cardiac gap junction channel protein connexin-43 (Cx43). Proper Cx43 localization and function at the cardiac intercalated disc (ID) is regulated by post-translational phosphorylation of Cx43-carboxy-terminus residues S325/S328/S330 (pS-Cx43). Concurrently, Cx43 traffics along microtubules (MTs) for targeted delivery to the ID. In DMD hearts, absence of dystrophin results in a hyperdensified and disorganized MT cytoskeleton, yet the link with pS-Cx43 remains unaddressed. To gain insight into the relationship between MTs and pS-Cx43, DMD mice (mdx) and pS-Cx43-deficient (mdxS3A) mice were treated with an inhibitor of MT polymerization, colchicine (Colch). Colch treatment protected mdx, not mdxS3A mice, against Cx43 remodeling, improved MT directionality, and enhanced pS-Cx43/tubulin interaction. Likewise, severe arrhythmias were prevented in isoproterenol-stressed mdx, not mdxS3A mice. Furthermore, MT directionality was improved in pS-Cx43-mimicking mdx (mdxS3E). Mdxutr+/- and mdxutr+/-S3A mice, lacking one copy of dystrophin homolog utrophin, displayed enhanced cardiac fibrosis and reduced lifespan compared with mdxutr+/-S3E; and Colch treatment corrected cardiac fibrosis in mdxutr+/- but not mdxutr+/-S3A. Collectively, the data suggest that improved MT directionality reduces Cx43 remodeling and that pS-Cx43 is necessary and sufficient to regulate MT organization, which plays crucial role in correcting cardiac dysfunction in DMD mice. Thus, identification of novel organizational mechanisms acting on pS-Cx43-MT will help develop novel cardioprotective therapies for DMD cardiomyopathy.NEW & NOTEWORTHY We found that colchicine administration to Cx43-phospho-deficient dystrophic mice fails to protect against Cx43 remodeling. Conversely, Cx43-phospho-mimic dystrophic mice display a normalized MT network. We envision a bidirectional regulation whereby correction of the dystrophic MTs leads to correction of Cx43 remodeling, which in turn leads to further correction of the MTs. Our findings suggest a link between phospho-Cx43 and MTs that provides strong foundations for novel therapeutics in DMD cardiomyopathy.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Conexina 43/genética , Conexina 43/metabolismo , Camundongos Endogâmicos mdx , Modelos Animais de Doenças , Arritmias Cardíacas/genética , Arritmias Cardíacas/prevenção & controle , Cardiomiopatias/genética , Cardiomiopatias/prevenção & controle , Microtúbulos/metabolismo , Colchicina , Fibrose
3.
J Clin Invest ; 130(4): 1713-1727, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31910160

RESUMO

Aberrant expression of the cardiac gap junction protein connexin-43 (Cx43) has been suggested as playing a role in the development of cardiac disease in the mdx mouse model of Duchenne muscular dystrophy (DMD); however, a mechanistic understanding of this association is lacking. Here, we identified a reduction of phosphorylation of Cx43 serines S325/S328/S330 in human and mouse DMD hearts. We hypothesized that hypophosphorylation of Cx43 serine-triplet triggers pathological Cx43 redistribution to the lateral sides of cardiomyocytes (remodeling). Therefore, we generated knockin mdx mice in which the Cx43 serine-triplet was replaced with either phospho-mimicking glutamic acids (mdxS3E) or nonphosphorylatable alanines (mdxS3A). The mdxS3E, but not mdxS3A, mice were resistant to Cx43 remodeling, with a corresponding reduction of Cx43 hemichannel activity. MdxS3E cardiomyocytes displayed improved intracellular Ca2+ signaling and a reduction of NADPH oxidase 2 (NOX2)/ROS production. Furthermore, mdxS3E mice were protected against inducible arrhythmias, related lethality, and the development of cardiomyopathy. Inhibition of microtubule polymerization by colchicine reduced both NOX2/ROS and oxidized CaMKII, increased S325/S328/S330 phosphorylation, and prevented Cx43 remodeling in mdx hearts. Together, these results demonstrate a mechanism of dystrophic Cx43 remodeling and suggest that targeting Cx43 may be a therapeutic strategy for preventing heart dysfunction and arrhythmias in DMD patients.


Assuntos
Sinalização do Cálcio , Cardiomiopatias/metabolismo , Conexina 43/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cardiomiopatias/genética , Cardiomiopatias/patologia , Conexina 43/genética , Humanos , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Microtúbulos/genética , Microtúbulos/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo
4.
JCI Insight ; 4(24)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31751316

RESUMO

Patients with Duchenne muscular dystrophy (DMD) commonly present with severe ventricular arrhythmias that contribute to heart failure. Arrhythmias and lethality are also consistently observed in adult Dmdmdx mice, a mouse model of DMD, after acute ß-adrenergic stimulation. These pathological features were previously linked to aberrant expression and remodeling of the cardiac gap junction protein connexin43 (Cx43). Here, we report that remodeled Cx43 protein forms Cx43 hemichannels in the lateral membrane of Dmdmdx cardiomyocytes and that the ß-adrenergic agonist isoproterenol (Iso) aberrantly activates these hemichannels. Block of Cx43 hemichannels or a reduction in Cx43 levels (using Dmdmdx Cx43+/- mice) prevents the abnormal increase in membrane permeability, plasma membrane depolarization, and Iso-evoked electrical activity in these cells. Additionally, Iso treatment promotes nitric oxide (NO) production and S-nitrosylation of Cx43 hemichannels in Dmdmdx heart. Importantly, inhibition of NO production prevents arrhythmias evoked by Iso. We found that NO directly activates Cx43 hemichannels by S-nitrosylation of cysteine at position 271. Our results demonstrate that opening of remodeled and S-nitrosylated Cx43 hemichannels plays a key role in the development of arrhythmias in DMD mice and that these channels may serve as therapeutic targets to prevent fatal arrhythmias in patients with DMD .


Assuntos
Arritmias Cardíacas/patologia , Conexina 43/metabolismo , Distrofia Muscular de Duchenne/complicações , Miócitos Cardíacos/patologia , Agonistas Adrenérgicos beta/toxicidade , Animais , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/patologia , Permeabilidade da Membrana Celular , Conexina 43/genética , Cisteína/metabolismo , Modelos Animais de Doenças , Distrofina/genética , Potenciais Evocados/efeitos dos fármacos , Humanos , Isoproterenol/toxicidade , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Distrofia Muscular de Duchenne/genética , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Oócitos , Técnicas de Patch-Clamp , Xenopus laevis
5.
J Neurosci ; 39(31): 6067-6080, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31127000

RESUMO

The cold- and menthol-sensitive transient receptor potential melastatin 8 (TRPM8) channel is important for both physiological temperature detection and cold allodynia. Activation of G-protein-coupled receptors (GPCRs) by proinflammatory mediators inhibits these channels. It was proposed that this inhibition proceeds via direct binding of Gαq to the channel. TRPM8 requires the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2 or PIP2] for activity. However, it was claimed that a decrease in cellular levels of this lipid upon receptor activation does not contribute to channel inhibition. Here, we show that supplementing the whole-cell patch pipette with PI(4,5)P2 reduced inhibition of TRPM8 by activation of Gαq-coupled receptors in mouse dorsal root ganglion (DRG) neurons isolated from both sexes. Stimulating the same receptors activated phospholipase C (PLC) and decreased plasma membrane PI(4,5)P2 levels in these neurons. PI(4,5)P2 also reduced inhibition of TRPM8 by activation of heterologously expressed muscarinic M1 receptors. Coexpression of a constitutively active Gαq protein that does not couple to PLC inhibited TRPM8 activity, and in cells expressing this protein, decreasing PI(4,5)P2 levels using a voltage-sensitive 5'-phosphatase induced a stronger inhibition of TRPM8 activity than in control cells. Our data indicate that, upon GPCR activation, Gαq binding reduces the apparent affinity of TRPM8 for PI(4,5)P2 and thus sensitizes the channel to inhibition induced by decreasing PI(4,5)P2 levels.SIGNIFICANCE STATEMENT Increased sensitivity to heat in inflammation is partially mediated by inhibition of the cold- and menthol-sensitive transient receptor potential melastatin 8 (TRPM8) ion channels. Most inflammatory mediators act via G-protein-coupled receptors that activate the phospholipase C pathway, leading to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. How receptor activation by inflammatory mediators leads to TRPM8 inhibition is not well understood. Here, we propose that direct binding of Gαq both reduces TRPM8 activity and sensitizes the channel to inhibition by decreased levels of its cofactor, PI(4,5)P2 Our data demonstrate the convergence of two downstream effectors of receptor activation, Gαq and PI(4,5)P2 hydrolysis, in the regulation of TRPM8.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Feminino , Gânglios Espinais/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Neuromuscul Disord ; 28(4): 361-372, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29477453

RESUMO

Duchenne muscular dystrophy (DMD) associated cardiomyopathy remains incurable. Connexin 43 (Cx43) is upregulated and remodeled in the hearts of mdx mice, a mouse model of DMD. Hearts from Wild Type, mdx, and mdx:Cx43(+/-) mice were studied before (4-6 months) and after (10-15 months) the onset of cardiomyopathy to assess the impact of decreasing Cx43 levels on cardiac pathology in dystrophic mice. Increased connexin 43 protein levels in mdx hearts were not observed in mdx:Cx43(+/-) hearts. Cx43 remodeling in mdx hearts was attenuated in mdx:Cx43(+/-) hearts. At time-point 4-6 months, isolated cardiomyocytes from mdx hearts displayed enhanced ethidium bromide uptake, augmented intracellular calcium signals and increased production of reactive oxygen species. These pathological features were improved in mdx:Cx43(+/-) cardiomyocytes. Isoproterenol-challenged mdx:Cx43(+/-) mice did not show arrhythmias or acute lethality observed in mdx mice. Likewise, isoproterenol-challenged mdx:Cx43(+/-) isolated hearts were also protected from arrhythmogenesis. At time-point 10-15 months, mdx:Cx43(+/-) mice showed decreased cardiac fibrosis and improved ventricular function, relative to mdx mice. These results suggest that normalization of connexin 43 protein levels in mdx mice reduces overall cardiac pathology.


Assuntos
Cálcio/metabolismo , Cardiomiopatias/metabolismo , Conexina 43/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animais , Cardiomiopatias/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Transgênicos , Distrofia Muscular de Duchenne/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia
7.
Cardiovasc Res ; 114(1): 90-102, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036556

RESUMO

Aims: Duchenne muscular dystrophy (DMD) is an inherited devastating muscle disease with severe and often lethal cardiac complications. Emerging evidence suggests that the evolution of the pathology in DMD is accompanied by the accumulation of mitochondria with defective structure and function. Here, we investigate whether defects in the housekeeping autophagic pathway contribute to mitochondrial and metabolic dysfunctions in dystrophic cardiomyopathy. Methods and results: We employed various biochemical and imaging techniques to assess mitochondrial structure and function as well as to evaluate autophagy, and specific mitochondrial autophagy (mitophagy), in hearts of mdx mice, an animal model of DMD. Our results indicate substantial structural damage of mitochondria and a significant decrease in ATP production in hearts of mdx animals, which developed cardiomyopathy. In these hearts, we also detected enhanced autophagy but paradoxically, mitophagy appeared to be suppressed. In addition, we found decreased levels of several proteins involved in the PINK1/PARKIN mitophagy pathway as well as an insignificant amount of PARKIN protein phosphorylation at the S65 residue upon induction of mitophagy. Conclusions: Our results suggest faulty mitophagy in dystrophic hearts due to defects in the PINK1/PARKIN pathway.


Assuntos
Autofagia , Cardiomiopatias/enzimologia , Mitocôndrias Cardíacas/enzimologia , Mitofagia , Distrofia Muscular de Duchenne/complicações , Miócitos Cardíacos/enzimologia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatias/patologia , Senescência Celular , Modelos Animais de Doenças , Camundongos Endogâmicos mdx , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Distrofia Muscular de Duchenne/enzimologia , Distrofia Muscular de Duchenne/genética , Miócitos Cardíacos/ultraestrutura , Fosforilação , Transdução de Sinais
8.
Stem Cells ; 35(3): 597-610, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27734557

RESUMO

Duchenne muscular dystrophy (DMD) is characterized by the loss of the protein dystrophin, leading to muscle fragility, progressive weakening, and susceptibility to mechanical stress. Although dystrophin-negative mdx mouse models have classically been used to study DMD, phenotypes appear mild compared to patients. As a result, characterization of muscle pathology, especially in the heart, has proven difficult. We report that injection of mdx embryonic stem cells (ESCs) into Wild Type blastocysts produces adult mouse chimeras with severe DMD phenotypes in the heart and skeletal muscle. Inflammation, regeneration and fibrosis are observed at the whole organ level, both in dystrophin-negative and dystrophin-positive portions of the chimeric tissues. Skeletal and cardiac muscle function are also decreased to mdx levels. In contrast to mdx heterozygous carriers, which show no significant phenotypes, these effects are even observed in chimeras with low levels of mdx ESC incorporation (10%-30%). Chimeric mice lack typical compensatory utrophin upregulation, and show pathological remodeling of Connexin-43. In addition, dystrophin-negative and dystrophin-positive isolated cardiomyocytes show augmented calcium response to mechanical stress, similar to mdx cells. These global effects highlight a novel role of mdx ESCs in triggering muscular dystrophy even when only low amounts are present. Stem Cells 2017;35:597-610.


Assuntos
Envelhecimento/patologia , Quimera/metabolismo , Células-Tronco Embrionárias/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/patologia , Miocárdio/patologia , Animais , Cálcio/metabolismo , Conexina 43/metabolismo , Distrofina/metabolismo , Feminino , Testes de Função Cardíaca , Humanos , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Miócitos Cardíacos/metabolismo , Regeneração
9.
Cardiovasc Res ; 108(3): 324-34, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26503985

RESUMO

AIMS: Nicotinamide adenine dinucleotide oxidases (NOXs) are important contributors to cellular oxidative stress in the cardiovascular system. The NOX2 isoform is upregulated in numerous disorders, including dystrophic cardiomyopathy, where it drives the progression of the disease. However, mechanisms underlying NOX2 overexpression are still unknown. We investigated the role of microRNAs (miRs) in the regulation of NOX2 expression. METHODS AND RESULTS: Duchenne muscular dystrophy (DMD) was used as a model of cardiomyopathy. After screening with miRNA target prediction databases and following qRT-PCR analysis, we found drastic downregulation of miR-448-3p in hearts of mdx mice, an animal model of DMD. The downregulation correlated with overexpression of the Ncf1 gene, encoding the NOX2 regulatory subunit p47(phox). Specificity of Ncf1 targeting by miR-448-3p was validated by luciferase reporter assay. Silencing of miR-448-3p in wild-type mice had a dramatic effect on cellular and functional properties of cardiac muscle as assessed by western blotting, qRT-PCR, confocal imaging, echocardiography, and histology. Acute treatment of mice with LNA-miR-448 inhibitors led to increased Ncf1 expression, abnormally elevated reactive oxygen species (ROS) production and exacerbated Ca(2+) signalling in cardiomyocytes, reminiscent of features previously observed in dystrophic cardiac cells. In addition, chronic inhibition of miR-448-3p resulted in dilated cardiomyopathy and arrhythmia, hallmarks of dystrophic cardiomyopathy. CONCLUSIONS: Our studies suggest that downregulation of miR-448-3p leads to the increase in the expression of Ncf1 gene and p47(phox) protein, as well as to the substantial increase in NOX2-derived ROS production. Cellular oxidative stress subsequently triggers events that finally culminate in cardiac tissue damage and development of cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada/enzimologia , MicroRNAs/metabolismo , Miocárdio/enzimologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Inativação Gênica , Predisposição Genética para Doença , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos mdx , MicroRNAs/genética , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/genética , Miocárdio/patologia , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Fenótipo , Fatores de Tempo , Transfecção , Remodelação Ventricular
10.
Cell Calcium ; 58(2): 186-95, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25975620

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive muscle disease with severe cardiac complications. It is believed that cellular oxidative stress and augmented Ca(2+) signaling drives the development of cardiac pathology. Some mitochondrial and metabolic dysfunctions have also been reported. Here we investigate cellular mechanisms responsible for impaired mitochondrial metabolism in dystrophic cardiomyopathy at early stages of the disease. We employed electrophysiological and imaging techniques to study mitochondrial structure and function in cardiomyocytes from mdx mice, an animal model of DMD. Here we show that mitochondrial matrix was progressively oxidized in myocytes isolated from mdx mice. Moreover, an abrupt increase in workload resulted in significantly more pronounced oxidation of mitochondria in dystrophic cells. Electron micrographs revealed a gradually increased number of damaged mitochondria in mdx myocytes. Degradation in mitochondrial structure was correlated with progressive increase in mitochondrial Ca(2+) sequestration and mitochondrial depolarization, despite a substantial and persistent elevation in resting cytosolic sodium levels. Treatment of mdx cells with cyclosporine A, an inhibitor of mitochondrial permeability transition pore (mPTP), shifted both resting and workload-dependent mitochondrial redox state to the levels recorded in control myocytes. It also significantly reduced workload dependent depolarization of mitochondrial membrane in dystrophic cardiomyocytes. Overall, our studies highlight age dependent deterioration of mitochondrial function in dystrophic cardiomyocytes, which seems to be associated with excessive opening of mPTP due to oxidative stress and cellular Ca(2+) overload.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Distrofia Muscular de Duchenne/patologia , Animais , Cálcio/metabolismo , Células Cultivadas , Ciclosporina/farmacologia , Citosol/metabolismo , Modelos Animais de Doenças , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Mitocôndrias Cardíacas/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Distrofia Muscular de Duchenne/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NAD/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sódio/metabolismo
11.
Biophys J ; 107(12): 2815-2827, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25517148

RESUMO

Cellular oxidative stress, associated with a variety of common cardiac diseases, is well recognized to affect the function of several key proteins involved in Ca(2+) signaling and excitation-contraction coupling, which are known to be exquisitely sensitive to reactive oxygen species. These include the Ca(2+) release channels of the sarcoplasmic reticulum (ryanodine receptors or RyR2s) and the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Oxidation of RyR2s was found to increase the open probability of the channel, whereas CaMKII can be activated independent of Ca(2+) through oxidation. Here, we investigated how oxidative stress affects RyR2 function and SR Ca(2+) signaling in situ, by analyzing Ca(2+) sparks in permeabilized mouse cardiomyocytes under a broad range of oxidative conditions. The results show that with increasing oxidative stress Ca(2+) spark duration is prolonged. In addition, long and very long-lasting (up to hundreds of milliseconds) localized Ca(2+) release events started to appear, eventually leading to sarcoplasmic reticulum (SR) Ca(2+) depletion. These changes of release duration could be prevented by the CaMKII inhibitor KN93 and did not occur in mice lacking the CaMKII-specific S2814 phosphorylation site on RyR2. The appearance of long-lasting Ca(2+) release events was paralleled by an increase of RyR2 oxidation, but also by RyR-S2814 phosphorylation, and by CaMKII oxidation. Our results suggest that in a strongly oxidative environment oxidation-dependent activation of CaMKII leads to RyR2 phosphorylation and thereby contributes to the massive prolongation of SR Ca(2+) release events.


Assuntos
Sinalização do Cálcio , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
12.
Cardiovasc Res ; 97(4): 666-75, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23263329

RESUMO

AIMS: Duchenne muscular dystrophy (DMD) is a muscle disease with serious cardiac complications. Changes in Ca(2+) homeostasis and oxidative stress were recently associated with cardiac deterioration, but the cellular pathophysiological mechanisms remain elusive. We investigated whether the activity of ryanodine receptor (RyR) Ca(2+) release channels is affected, whether changes in function are cause or consequence and which post-translational modifications drive disease progression. METHODS AND RESULTS: Electrophysiological, imaging, and biochemical techniques were used to study RyRs in cardiomyocytes from mdx mice, an animal model of DMD. Young mdx mice show no changes in cardiac performance, but do so after ∼8 months. Nevertheless, myocytes from mdx pups exhibited exaggerated Ca(2+) responses to mechanical stress and 'hypersensitive' excitation-contraction coupling, hallmarks of increased RyR Ca(2+) sensitivity. Both were normalized by antioxidants, inhibitors of NAD(P)H oxidase and CaMKII, but not by NO synthases and PKA antagonists. Sarcoplasmic reticulum Ca(2+) load and leak were unchanged in young mdx mice. However, by the age of 4-5 months and in senescence, leak was increased and load was reduced, indicating disease progression. By this age, all pharmacological interventions listed above normalized Ca(2+) signals and corrected changes in ECC, Ca(2+) load, and leak. CONCLUSION: Our findings suggest that increased RyR Ca(2+) sensitivity precedes and presumably drives the progression of dystrophic cardiomyopathy, with oxidative stress initiating its development. RyR oxidation followed by phosphorylation, first by CaMKII and later by PKA, synergistically contributes to cardiac deterioration.


Assuntos
Cardiomiopatias/metabolismo , Distrofia Muscular de Duchenne/complicações , Processamento de Proteína Pós-Traducional , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Progressão da Doença , Distrofina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , NADPH Oxidases/fisiologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
13.
J Mol Cell Cardiol ; 58: 217-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23261966

RESUMO

Dilated cardiomyopathy is a serious and almost inevitable complication of Duchenne Muscular Dystrophy, a devastating and fatal disease of skeletal muscle resulting from the lack of functional dystrophin, a protein linking the cytoskeleton to the extracellular matrix. Ultimately, it leads to congestive heart failure and arrhythmias resulting from both cardiac muscle fibrosis and impaired function of the remaining cardiomyocytes. Here we summarize findings obtained in several laboratories, focusing on cellular mechanisms that result in degradation of cardiac functions in dystrophy.


Assuntos
Cardiomiopatia Dilatada/genética , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Miócitos Cardíacos/patologia , Arritmias Cardíacas/complicações , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/fisiopatologia , Distrofina/deficiência , Distrofina/metabolismo , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/fisiopatologia , Miócitos Cardíacos/metabolismo
14.
Biochim Biophys Acta ; 1833(4): 866-75, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22960642

RESUMO

In cardiac muscle, a number of posttranslational protein modifications can alter the function of the Ca(2+) release channel of the sarcoplasmic reticulum (SR), also known as the ryanodine receptor (RyR). During every heartbeat RyRs are activated by the Ca(2+)-induced Ca(2+) release mechanism and contribute a large fraction of the Ca(2+) required for contraction. Some of the posttranslational modifications of the RyR are known to affect its gating and Ca(2+) sensitivity. Presently, research in a number of laboratories is focused on RyR phosphorylation, both by PKA and CaMKII, or on RyR modifications caused by reactive oxygen and nitrogen species (ROS/RNS). Both classes of posttranslational modifications are thought to play important roles in the physiological regulation of channel activity, but are also known to provoke abnormal alterations during various diseases. Only recently it was realized that several types of posttranslational modifications are tightly connected and form synergistic (or antagonistic) feed-back loops resulting in additive and potentially detrimental downstream effects. This review summarizes recent findings on such posttranslational modifications, attempts to bridge molecular with cellular findings, and opens a perspective for future work trying to understand the ramifications of crosstalk in these multiple signaling pathways. Clarifying these complex interactions will be important in the development of novel therapeutic approaches, since this may form the foundation for the implementation of multi-pronged treatment regimes in the future. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.


Assuntos
Sinalização do Cálcio/fisiologia , Acoplamento Excitação-Contração/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Ativação do Canal Iônico/fisiologia , Miócitos Cardíacos/citologia , Fosforilação , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo
15.
J Biol Chem ; 288(4): 2103-9, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23223241

RESUMO

Functional coupling between inositol (1,4,5)-trisphosphate receptor (IP(3)R) and ryanodine receptor (RyR) represents a critical component of intracellular Ca(2+) signaling in many excitable cells; however, the role of this mechanism in skeletal muscle remains elusive. In skeletal muscle, RyR-mediated Ca(2+) sparks are suppressed in resting conditions, whereas application of transient osmotic stress can trigger activation of Ca(2+) sparks that are restricted to the periphery of the fiber. Here we show that onset of these spatially confined Ca(2+) sparks involves interaction between activation of IP(3)R and RyR near the sarcolemmal membrane. Pharmacological prevention of IP(3) production or inhibition of IP(3)R channel activity abolishes stress-induced Ca(2+) sparks in skeletal muscle. Although genetic ablation of the type 2 IP(3)R does not appear to affect Ca(2+) sparks in skeletal muscle, specific silencing of the type 1 IP(3)R leads to ablation of stress-induced Ca(2+) sparks. Our data indicate that membrane-delimited signaling involving cross-talk between IP(3)R1 and RyR1 contributes to Ca(2+) spark activation in skeletal muscle.


Assuntos
Cálcio/metabolismo , Regulação da Expressão Gênica , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/química , Sinalização do Cálcio , Camundongos , Microscopia Confocal/métodos , Modelos Biológicos , Modelos Genéticos , Osmose , Técnicas de Patch-Clamp , Plasmídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
16.
Am J Physiol Heart Circ Physiol ; 297(6): H1992-2003, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19783774

RESUMO

Duchenne muscular dystrophy represents a severe inherited disease of striated muscle. It is caused by a mutation of the dystrophin gene and characterized by a progressive loss of skeletal muscle function. Most patients also develop a dystrophic cardiomyopathy, resulting in dilated hypertrophy and heart failure, but the cellular mechanisms leading to the deterioration of cardiac function remain elusive. In the present study, we tested whether defective excitation-contraction (E-C) coupling contributes to impaired cardiac performance. "E-C coupling gain" was determined in cardiomyocytes from control and dystrophin-deficient mdx mice. To this end, L-type Ca2+ currents (ICaL) were measured with the whole cell patch-clamp technique, whereas Ca2+ transients were simultaneously recorded with confocal imaging of fluo-3. Initial findings indicated subtle changes of E-C coupling in mdx cells despite matched Ca2+ loading of the sarcoplasmic reticulum (SR). However, lowering the extracellular Ca2+ concentration, a maneuver used to unmask latent E-C coupling problems, was surprisingly much better tolerated by mdx myocytes, suggesting a hypersensitive E-C coupling mechanism. Challenging the SR Ca2+ release by slow elevations of the intracellular Ca2+ concentration resulted in Ca2+ oscillations after a much shorter delay in mdx cells. This is consistent with an enhanced Ca2+ sensitivity of the SR Ca2+-release channels [ryanodine receptors (RyRs)]. The hypersensitivity could be normalized by the introduction of reducing agents, indicating that the elevated cellular ROS generation in dystrophy underlies the abnormal RyR sensitivity and hypersensitive E-C coupling. Our data suggest that in dystrophin-deficient cardiomyocytes, E-C coupling is altered due to potentially arrhythmogenic changes in the Ca2+ sensitivity of redox-modified RyRs.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Cardiomiopatia Dilatada/etiologia , Distrofia Muscular de Duchenne/complicações , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Canais de Cálcio Tipo L/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Sequestradores de Radicais Livres/farmacologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos mdx , Microscopia Confocal , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Oxirredução , Técnicas de Patch-Clamp , Espécies Reativas de Oxigênio/metabolismo , Substâncias Redutoras/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Retículo Sarcoplasmático/efeitos dos fármacos , Sódio/metabolismo , Fatores de Tempo
17.
Pflugers Arch ; 458(5): 915-28, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19387681

RESUMO

Muscular dystrophies are among the most severe inherited muscle diseases. The genetic defect is a mutation in the gene for dystrophin, a cytoskeletal protein which protects muscle cells from mechanical damage. Mechanical stress, applied as osmotic shock, elicits an abnormal surge of Ca(2+) spark-like events in skeletal muscle fibers from dystrophin deficient (mdx) mice. Previous studies suggested a link between changes in the intracellular redox environment and appearance of Ca(2+) sparks in normal mammalian skeletal muscle. Here, we tested whether the exaggerated Ca(2+) responses in mdx fibers are related to oxidative stress. Localized intracellular and mitochondrial Ca(2+) transients, as well as ROS production, were assessed with confocal microscopy. The rate of basal cellular but not mitochondrial ROS generation was significantly higher in mdx cells. This difference was abolished by pre-incubation of mdx fibers with an inhibitor of NAD(P)H oxidase. In addition, immunoblotting showed a significantly stronger expression of NAD(P)H oxidase in mdx muscle, suggesting a major contribution of this enzyme to oxidative stress in mdx fibers. Osmotic shock produced an abnormal and persistent Ca(2+) spark activity, which was suppressed by ROS-reducing agents and by inhibitors of NAD(P)H oxidase. These Ca(2+) signals resulted in mitochondrial Ca(2+) accumulation in mdx fibers and an additional boost in cellular and mitochondrial ROS production. Taken together, our results indicate that the excessive ROS production and the simultaneous activation of abnormal Ca(2+) signals amplify each other, finally culminating in a vicious cycle of damaging events, which may contribute to the abnormal stress sensitivity in dystrophic skeletal muscle.


Assuntos
Sinalização do Cálcio/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Radicais Livres/metabolismo , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Mitocôndrias/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Pressão Osmótica/fisiologia , Espécies Reativas de Nitrogênio/metabolismo
18.
Methods ; 46(3): 183-93, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18848990

RESUMO

The ryanodine receptors (RyRs) are intracellular Ca2+ release channels of the sarcoplasmic reticulum (SR) involved in many cellular responses, including muscle excitation-contraction coupling. Multiple biochemical and biophysical methods are available to study RyR functions. However, most of them are somewhat limited because they can only be used to examine channels which are purified from the SR and no longer in their natural environment. In this review we discuss optical methods for studying RyR functions in situ. We describe several techniques for the investigation of local (microscopic) intracellular Ca2+ signals (a.k.a Ca2+ sparks) by means of confocal microscopy and flash photolysis of caged compounds. We discuss how these studies can and will continue to contribute to our understanding of RyR function in physiological and pathological conditions.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Acetatos/farmacologia , Algoritmos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Etilenodiaminas/farmacologia , Hidroquinonas/farmacologia , Microscopia Confocal/métodos , Músculo Esquelético/citologia , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp/métodos , Fenilacetatos/farmacologia , Retículo Sarcoplasmático/metabolismo
19.
Cell ; 133(1): 53-65, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18394989

RESUMO

Mice with a malignant hyperthermia mutation (Y522S) in the ryanodine receptor (RyR1) display muscle contractures, rhabdomyolysis, and death in response to elevated environmental temperatures. We demonstrate that this mutation in RyR1 causes Ca(2+) leak, which drives increased generation of reactive nitrogen species (RNS). Subsequent S-nitrosylation of the mutant RyR1 increases its temperature sensitivity for activation, producing muscle contractures upon exposure to elevated temperatures. The Y522S mutation in humans is associated with central core disease. Many mitochondria in the muscle of heterozygous Y522S mice are swollen and misshapen. The mutant muscle displays decreased force production and increased mitochondrial lipid peroxidation with aging. Chronic treatment with N-acetylcysteine protects against mitochondrial oxidative damage and the decline in force generation. We propose a feed-forward cyclic mechanism that increases the temperature sensitivity of RyR1 activation and underlies heat stroke and sudden death. The cycle eventually produces a myopathy with damaged mitochondria.


Assuntos
Morte Súbita/etiologia , Golpe de Calor/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Temperatura Alta , Humanos , Hipertermia Maligna/metabolismo , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Nitrosação , Estresse Oxidativo , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio
20.
Cardiovasc Res ; 77(4): 766-73, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18056762

RESUMO

AIMS: Cardiac myopathies are the second leading cause of death in patients with Duchenne and Becker muscular dystrophy, the two most common and severe forms of a disabling striated muscle disease. Although the genetic defect has been identified as mutations of the dystrophin gene, very little is known about the molecular and cellular events leading to progressive cardiac muscle damage. Dystrophin is a protein linking the cytoskeleton to a complex of transmembrane proteins that interact with the extracellular matrix. The fragility of the cell membrane resulting from the lack of dystrophin is thought to cause an excessive susceptibility to mechanical stress. Here, we examined cellular mechanisms linking the initial membrane damage to the dysfunction of dystrophic heart. METHODS AND RESULTS: Cardiac ventricular myocytes were enzymatically isolated from 5- to 9-month-old dystrophic mdx and wild-type (WT) mice. Cells were exposed to mechanical stress, applied as osmotic shock. Stress-induced cytosolic and mitochondrial Ca(2+) signals, production of reactive oxygen species (ROS), and mitochondrial membrane potential were monitored with confocal microscopy and fluorescent indicators. Pharmacological tools were used to scavenge ROS and to identify their possible sources. Osmotic shock triggered excessive cytosolic Ca(2+) signals, often lasting for several minutes, in 82% of mdx cells. In contrast, only 47% of the WT cardiomyocytes responded with transient and moderate intracellular Ca(2+) signals. On average, the reaction was 6-fold larger in mdx cells. Removal of extracellular Ca(2+) abolished these responses, implicating Ca(2+) influx as a trigger for abnormal Ca(2+) signalling. Our further experiments revealed that osmotic stress in mdx cells produced an increase in ROS production and mitochondrial Ca(2+) overload. The latter was followed by collapse of the mitochondrial membrane potential, an early sign of cell death. CONCLUSION: Overall, our findings reveal that excessive intracellular Ca(2+) signals and ROS generation link the initial sarcolemmal injury to mitochondrial dysfunctions. The latter possibly contribute to the loss of functional cardiac myocytes and heart failure in dystrophy. Understanding the sequence of events of dystrophic cell damage and the deleterious amplification systems involved, including several positive feed-back loops, may allow for a rational development of novel therapeutic strategies.


Assuntos
Sinalização do Cálcio , Cardiomiopatias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Distrofias Musculares/complicações , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Morte Celular , Citosol/metabolismo , Sequestradores de Radicais Livres/farmacologia , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos mdx , Microscopia Confocal , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Pressão Osmótica , Estresse Mecânico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA