Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Des ; 30(7): 489-518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757691

RESUMO

Topical drug delivery holds immense significance in dermatological treatments due to its non-invasive nature and direct application to the target site. Organogels, a promising class of topical drug delivery systems, have acquired substantial attention for enhancing drug delivery efficiency. This review article aims to explore the advantages of organogels, including enhanced drug solubility, controlled release, improved skin penetration, non-greasy formulations, and ease of application. The mechanism of organogel permeation into the skin is discussed, along with formulation strategies, which encompass the selection of gelling agents, cogelling agents, and additives while considering the influence of temperature and pH on gel formation. Various types of organogelators and organogels and their properties, such as viscoelasticity, non-birefringence, thermal stability, and optical clarity, are presented. Moreover, the biomedical applications of organogels in targeting skin cancer, anti-inflammatory drug delivery, and antifungal drug delivery are discussed. Characterization parameters, biocompatibility, safety considerations, and future directions in optimizing skin permeation, ensuring long-term stability, addressing regulatory challenges, and exploring potential combination therapies are thoroughly examined. Overall, this review highlights the immense potential of organogels in redefining topical drug delivery and their significant impact on the field of dermatological treatments, thus paving the way for exciting prospects in the domain.


Assuntos
Sistemas de Liberação de Medicamentos , Géis , Géis/química , Humanos , Administração Tópica , Animais , Administração Cutânea , Absorção Cutânea/efeitos dos fármacos
2.
Materials (Basel) ; 17(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541577

RESUMO

MXenes are two-dimensional transition metal carbides, nitrides, and carbonitrides that have become important materials in nanotechnology because of their remarkable mechanical, electrical, and thermal characteristics. This review emphasizes how crucial MXene conjugates are for several biomedical applications, especially in the field of cancer. These two-dimensional (2D) nanoconjugates with photothermal, chemotherapeutic, and photodynamic activities have demonstrated promise for highly effective and noninvasive anticancer therapy. MXene conjugates, with their distinctive optical capabilities, have been employed for bioimaging and biosensing, and their excellent light-to-heat conversion efficiency makes them perfect biocompatible and notably proficient nanoscale agents for photothermal applications. The synthesis and characterization of MXenes provide a framework for an in-depth understanding of various fabrication techniques and their importance in the customized formation of MXene conjugates. The following sections explore MXene-based conjugates for nanotheranostics and demonstrate their enormous potential for biomedical applications. Nanoconjugates, such as polymers, metals, graphene, hydrogels, biomimetics, quantum dots, and radio conjugates, exhibit unique properties that can be used for various therapeutic and diagnostic applications in the field of cancer nanotheranostics. An additional layer of understanding into the safety concerns of MXene nanoconjugates is provided by detailing their toxicity viewpoints. Furthermore, the review concludes by addressing the opportunities and challenges in the clinical translation of MXene-based nanoconjugates, emphasizing their potential in real-world medical practices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA