Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 373: 803-822, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39084466

RESUMO

Ischemic stroke-induced mitochondrial dysfunction in the blood-brain barrier-forming brain endothelial cells (BECs) results in long-term neurological dysfunction post-stroke. We previously reported data from a pilot study where intravenous administration of human BEC (hBEC)-derived mitochondria-containing extracellular vesicles (EVs) showed a potential efficacy signal in a mouse middle cerebral artery occlusion (MCAo) model of stroke. We hypothesized that EVs harvested from donor species homologous to the recipient species (e.g., mouse) may improve therapeutic efficacy, and therefore, use of mouse BEC (mBEC)-derived EVs may improve post-stroke outcomes in MCAo mice. We investigated potential differences in the mitochondria transfer of EVs derived from the same species as the recipient cell (mBEC-EVs and recipient mBECs or hBECs-EVs and recipient hBECs) vs. cross-species EVs and recipient cells (mBEC-EVs and recipient hBECs or vice versa). Our results showed that while both hBEC- and mBEC-EVs transferred EV mitochondria, mBEC-EVs outperformed hBEC-EVs in increasing ATP levels and improved recipient mBEC mitochondrial function via increasing oxygen consumption rates. mBEC-EVs significantly reduced brain infarct volume and neurological deficit scores compared to vehicle-injected MCAo mice. The superior therapeutic efficacy of mBEC-EVs in MCAo mice support the continued use of mBEC-EVs to optimize the therapeutic potential of mitochondria-containing EVs in preclinical mouse models.

2.
CHEST Crit Care ; 2(2)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38938510

RESUMO

BACKGROUND: Acute brain dysfunction during sepsis, which manifests as delirium or coma, is common and is associated with multiple adverse outcomes, including longer periods of mechanical ventilation, prolonged hospital stays, and increased mortality. Delirium and coma during sepsis may be manifestations of alteration in systemic metabolism. Because access to brain mitochondria is a limiting factor, measurement of peripheral platelet bioenergetics offers a potential opportunity to understand metabolic changes associated with acute brain dysfunction during sepsis. RESEARCH QUESTION: Are altered platelet mitochondrial bioenergetics associated with acute brain dysfunction during sepsis? STUDY DESIGN AND METHODS: We assessed participants with critical illness in the ICU for the presence of delirium or coma via validated assessment measures. Blood samples were collected and processed to isolate and measure platelet mitochondrial oxygen consumption. We used Seahorse extracellular flux to measure directly baseline, proton leak, maximal oxygen consumption rate, and extracellular acidification rate. We calculated adenosine triphosphate-linked, spare respiratory capacity, and nonmitochondrial oxygen consumption rate from the measured values. RESULTS: Maximum oxygen consumption was highest in patients with coma, as was spare respiratory capacity and extracellular acidification rate in unadjusted analysis. After adjusting for age, sedation, modified Sequential Organ Failure Assessment score without the neurologic component, and preexisting cognitive function, increased spare respiratory capacity remained associated with coma. Delirium was not associated with any platelet mitochondrial bioenergetics. INTERPRETATION: In this single-center exploratory prospective cohort study, we found that increased platelet mitochondrial spare respiratory capacity was associated with coma in patients with sepsis. Future studies powered to determine any relationship between delirium and mitochondrial respiration bioenergetics are needed.

4.
BMJ Open ; 14(4): e081120, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688665

RESUMO

INTRODUCTION: Acute kidney injury (AKI) is a common complication of sepsis associated with increased risk of death. Preclinical data and observational human studies suggest that activation of AMP-activated protein kinase, an ubiquitous master regulator of energy that can limit mitochondrial injury, with metformin may protect against sepsis-associated AKI (SA-AKI) and mortality. The Randomized Clinical Trial of the Safety and FeasibiLity of Metformin as a Treatment for sepsis-associated AKI (LiMiT AKI) aims to evaluate the safety and feasibility of enteral metformin in patients with sepsis at risk of developing SA-AKI. METHODS AND ANALYSIS: Blind, randomised, placebo-controlled clinical trial in a single-centre, quaternary teaching hospital in the USA. We will enrol adult patients (18 years of age or older) within 48 hours of meeting Sepsis-3 criteria, admitted to intensive care unit, with oral or enteral access. Patients will be randomised 1:1:1 to low-dose metformin (500 mg two times per day), high-dose metformin (1000 mg two times per day) or placebo for 5 days. Primary safety outcome will be the proportion of metformin-associated serious adverse events. Feasibility assessment will be based on acceptability by patients and clinicians, and by enrolment rate. ETHICS AND DISSEMINATION: This study has been approved by the Institutional Review Board. All patients or surrogates will provide written consent prior to enrolment and any study intervention. Metformin is a widely available, inexpensive medication with a long track record for safety, which if effective would be accessible and easy to deploy. We describe the study methods using the Standard Protocol Items for Randomized Trials framework and discuss key design features and methodological decisions. LiMiT AKI will investigate the feasibility and safety of metformin in critically ill patients with sepsis at risk of SA-AKI, in preparation for a future large-scale efficacy study. Main results will be published as soon as available after final analysis. TRIAL REGISTRATION NUMBER: NCT05900284.


Assuntos
Injúria Renal Aguda , Estudos de Viabilidade , Hipoglicemiantes , Metformina , Sepse , Humanos , Masculino , Injúria Renal Aguda/etiologia , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Sepse/complicações , Sepse/tratamento farmacológico , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
5.
J Clin Invest ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687608

RESUMO

Dicarboxylic fatty acids are generated in the liver and kidney in a minor pathway called fatty acid ω-oxidation. The effects of consuming dicarboxylic fatty acids as an alternative source of dietary fat have not been explored. Here, we fed dodecanedioic acid, a 12-carbon dicarboxylic (DC12), to mice at 20% of daily caloric intake for nine weeks. DC12 increased metabolic rate, reduced body fat, reduced liver fat, and improved glucose tolerance. We observed DC12-specific breakdown products in liver, kidney, muscle, heart, and brain, indicating that oral DC12 escaped first-pass liver metabolism and was utilized by many tissues. In tissues expressing the "a" isoform of acyl-CoA oxidase-1 (ACOX1), a key peroxisomal fatty acid oxidation enzyme, DC12 was chain shortened to the TCA cycle intermediate succinyl-CoA. In tissues with low peroxisomal fatty acid oxidation capacity, DC12 was oxidized by mitochondria. In vitro, DC12 was catabolized even by adipose tissue and was not stored intracellularly. We conclude that DC12 and other dicarboxylic acids may be useful for combatting obesity and for treating metabolic disorders.

6.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456510

RESUMO

Thrombosis and inflammation are intimately linked and synergistically contribute to the pathogenesis of numerous thromboinflammatory diseases, including sickle cell disease (SCD). While platelets are central to thrombogenesis and inflammation, the molecular mechanisms of crosstalk between the 2 remain elusive. High-mobility group box 1 (HMGB1) regulates inflammation and stimulates platelet activation through Toll-like receptor 4. However, it remains unclear whether HMGB1 modulates other thrombotic agonists to regulate platelet activation. Herein, using human platelets, we demonstrate that HMGB1 significantly enhanced ADP-mediated platelet activation. Furthermore, inhibition of the purinergic receptor P2Y12 attenuated HMGB1-dependent platelet activation. Mechanistically, we show that HMGB1 stimulated ADP secretion, while concomitantly increasing P2Y12 levels at the platelet membrane. We show that in SCD patients, increased plasma HMGB1 levels were associated with heightened platelet activation and surface P2Y12 expression. Treatment of healthy platelets with plasma from SCD patients enhanced platelet activation and surface P2Y12, and increased sensitivity to ADP-mediated activation, and these effects were linked to plasma HMGB1. We conclude that HMGB1-mediated platelet activation involves ADP-dependent P2Y12 signaling, and HMGB1 primes platelets for ADP signaling. This complementary agonism between ADP and HMGB1 furthers the understanding of thromboinflammatory signaling in conditions such as SCD, and provides insight for therapeutic P2Y12 inhibition.


Assuntos
Anemia Falciforme , Proteína HMGB1 , Trombose , Humanos , Plaquetas/metabolismo , Proteína HMGB1/metabolismo , Inflamação/metabolismo , Ativação Plaquetária , Trombose/metabolismo
7.
J Ultrasound Med ; 43(6): 1063-1080, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38440926

RESUMO

BACKGROUND: Acoustically activatable perfluoropropane droplets (PD) can be formulated from commercially available microbubble preparations. Diagnostic transthoracic ultrasound frequencies have resulted in acoustic activation (AA) predominately within myocardial infarct zones (IZ). OBJECTIVE: We hypothesized that the AA area following acute coronary ischemia/reperfusion (I/R) would selectively enhance the developing scar zone, and target bioeffects specifically to this region. METHODS: We administered intravenous PD in 36 rats and 20 pigs at various stages of myocardial scar formation (30 minutes, 1 day, and 7 days post I/R) to determine what effect infarct age had on the AA within the IZ. This was correlated with histology, myeloperoxidase activity, and tissue nitrite activity. RESULTS: The degree of AA within the IZ in rats was not associated with collagen content, neutrophil infiltration, or infarct age. AA within 24 hours of I/R was associated with increased nitric oxide utilization selectively within the IZ (P < .05 compared with remote zone). The spatial extent of AA in pigs correlated with infarct size only when performed before sacrifice at 7 days (r = .74, P < .01). CONCLUSIONS: Acoustic activation of intravenous PD enhances the developing scar zone following I/R, and results in selective tissue nitric oxide utilization.


Assuntos
Fluorocarbonos , Infarto do Miocárdio , Animais , Fluorocarbonos/farmacocinética , Suínos , Ratos , Infarto do Miocárdio/diagnóstico por imagem , Masculino , Meios de Contraste/farmacocinética , Nanopartículas , Ratos Sprague-Dawley , Miocárdio/metabolismo , Modelos Animais de Doenças , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Microbolhas , Feminino , Ultrassonografia/métodos
8.
iScience ; 27(3): 109146, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38414852

RESUMO

The endogenous mechanisms that propagate cardiomyocyte differentiation and prevent de-differentiation remain unclear. While the expression of the heme protein myoglobin increases by over 50% during cardiomyocyte differentiation, a role for myoglobin in regulating cardiomyocyte differentiation has not been tested. Here, we show that deletion of myoglobin in cardiomyocyte models decreases the gene expression of differentiation markers and stimulates cellular proliferation, consistent with cardiomyocyte de-differentiation. Mechanistically, the heme prosthetic group of myoglobin catalyzes the oxidation of the Hippo pathway kinase LATS1, resulting in phosphorylation and inactivation of yes-associated protein (YAP). In vivo, myoglobin-deficient zebrafish hearts show YAP dephosphorylation and accelerated cardiac regeneration after apical injury. Similarly, myoglobin knockdown in neonatal murine hearts shows increased YAP dephosphorylation and cardiomyocyte cycling. These data demonstrate a novel role for myoglobin as an endogenous driver of cardiomyocyte differentiation and highlight myoglobin as a potential target to enhance cardiac development and improve cardiac repair and regeneration.

9.
Sci Transl Med ; 16(729): eadd2029, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198571

RESUMO

Hypoxic reprogramming of vasculature relies on genetic, epigenetic, and metabolic circuitry, but the control points are unknown. In pulmonary arterial hypertension (PAH), a disease driven by hypoxia inducible factor (HIF)-dependent vascular dysfunction, HIF-2α promoted expression of neighboring genes, long noncoding RNA (lncRNA) histone lysine N-methyltransferase 2E-antisense 1 (KMT2E-AS1) and histone lysine N-methyltransferase 2E (KMT2E). KMT2E-AS1 stabilized KMT2E protein to increase epigenetic histone 3 lysine 4 trimethylation (H3K4me3), driving HIF-2α-dependent metabolic and pathogenic endothelial activity. This lncRNA axis also increased HIF-2α expression across epigenetic, transcriptional, and posttranscriptional contexts, thus promoting a positive feedback loop to further augment HIF-2α activity. We identified a genetic association between rs73184087, a single-nucleotide variant (SNV) within a KMT2E intron, and disease risk in PAH discovery and replication patient cohorts and in a global meta-analysis. This SNV displayed allele (G)-specific association with HIF-2α, engaged in long-range chromatin interactions, and induced the lncRNA-KMT2E tandem in hypoxic (G/G) cells. In vivo, KMT2E-AS1 deficiency protected against PAH in mice, as did pharmacologic inhibition of histone methylation in rats. Conversely, forced lncRNA expression promoted more severe PH. Thus, the KMT2E-AS1/KMT2E pair orchestrates across convergent multi-ome landscapes to mediate HIF-2α pathobiology and represents a key clinical target in pulmonary hypertension.


Assuntos
Hipertensão Pulmonar , RNA Longo não Codificante , Humanos , Ratos , Animais , Camundongos , Alelos , Hipertensão Pulmonar/genética , Histonas , RNA Longo não Codificante/genética , Roedores , Lisina , Hipertensão Pulmonar Primária Familiar , Hipóxia/genética , Metiltransferases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
10.
bioRxiv ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38293207

RESUMO

Ischemic stroke-induced mitochondrial dysfunction in the blood-brain barrier-forming brain endothelial cells ( BECs ) results in long-term neurological dysfunction post-stroke. We previously data from a pilot study where intravenous administration of human BEC ( hBEC )-derived mitochondria-containing extracellular vesicles ( EVs ) showed a potential efficacy signal in a mouse middle cerebral artery occlusion ( MCAo ) model of stroke. We hypothesized that EVs harvested from donor species homologous to the recipient species ( e.g., mouse) may improve therapeutic efficacy, and therefore, use of mouse BEC ( mBEC )-derived EVs may improve post-stroke outcomes in MCAo mice. We investigated potential differences in the mitochondria transfer of EVs derived from the same species as the recipient cell (mBEC-EVs and recipient mBECs or hBECs-EVs and recipient hBECs) vs . cross-species EVs and recipient cells (mBEC-EVs and recipient hBECs or vice versa ). Our results showed that while both hBEC- and mBEC-EVs transferred EV mitochondria, mBEC-EVs outperformed hBEC-EVs in increasing ATP levels and improved recipient mBEC mitochondrial function via increasing oxygen consumption rates. mBEC-EVs significantly reduced brain infarct volume and neurological deficit scores compared to vehicle-injected MCAo mice. The superior therapeutic efficacy of mBEC-EVs in a mouse MCAo stroke support the continued use of mBEC-EVs to optimize the therapeutic potential of mitochondria-containing EVs in preclinical mouse models.

11.
Cell Rep ; 43(1): 113557, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38113141

RESUMO

Metabolic reprogramming in pediatric diffuse midline glioma is driven by gene expression changes induced by the hallmark histone mutation H3K27M, which results in aberrantly permissive activation of oncogenic signaling pathways. Previous studies of diffuse midline glioma with altered H3K27 (DMG-H3K27a) have shown that the RAS pathway, specifically through its downstream kinase, extracellular-signal-related kinase 5 (ERK5), is critical for tumor growth. Further downstream effectors of ERK5 and their role in DMG-H3K27a metabolic reprogramming have not been explored. We establish that ERK5 is a critical regulator of cell proliferation and glycolysis in DMG-H3K27a. We demonstrate that ERK5 mediates glycolysis through activation of transcription factor MEF2A, which subsequently modulates expression of glycolytic enzyme PFKFB3. We show that in vitro and mouse models of DMG-H3K27a are sensitive to the loss of PFKFB3. Multi-targeted drug therapy against the ERK5-PFKFB3 axis, such as with small-molecule inhibitors, may represent a promising therapeutic approach in patients with pediatric diffuse midline glioma.


Assuntos
Glioma , Histonas , Animais , Criança , Humanos , Camundongos , MAP Quinases Reguladas por Sinal Extracelular , Glioma/genética , Glicólise , Histonas/genética , Fosfofrutoquinase-2 , Monoéster Fosfórico Hidrolases , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA