Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 149: 108277, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36198256

RESUMO

The electrochemically driven cytochrome P450 reactions have great promise as drug sensing device, new drug searching tool and bioreactor with broad synthetic application. In the present work, we proposed approaches for the increasing the efficiency of cytochrome P450 3A4 electrocatalysis, based on fine regulation and reproduction of nature hemeprotein catalytic cycle and electron transfer pathways on electrode. To analyze the comparative electrochemical and electrocatalytic activity, cytochrome P450 3A4 was immobilized on electrodes modified with a membrane-like synthetic surfactant, didodecyldimethylammonium bromide (DDAB). We used riboflavin, FMN and FAD as low molecular models of NADPH-dependent cytochrome P450 reductase for the improving and enhancement properties of catalytically responsible cytochrome P450 3A4-electrode. The efficiencies of electrocatalysis of erythromycin N-demethylation as well-known cytochrome P450 3A4 substrate in the case of riboflavin, FAD and FMN as electron transfer mediators were 135 ± 6, 171 ± 15 and 203 ± 10 %, respectively (in comparison with 100 ± 18 % erythromycin N-demethylation in the case of cytochrome P450 3A4-electrode as catalyst). Molecular modeling of cytochrome P450 3A4 complexes with riboflavin, FMN and FAD confirms possibility of binding isoalloxazine ring of riboflavin to the protein on the proximal side of hemeprotein, which is the place for binding of redox partners of the cytochrome P450.


Assuntos
Mononucleotídeo de Flavina , Flavina-Adenina Dinucleotídeo , NADPH-Ferri-Hemoproteína Redutase/química , Sistema Enzimático do Citocromo P-450/metabolismo , Eritromicina
2.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362320

RESUMO

Steroids with a nitrogen-containing heterocycle in the side chain are known as effective inhibitors of androgen signaling and/or testosterone biosynthesis, thus showing beneficial effects for the treatment of prostate cancer. In this work, a series of 3ß-hydroxy-5-ene steroids, containing an isoxazole fragment in their side chain, was synthesized. The key steps included the preparation of Weinreb amide, its conversion to acetylenic ketones, and the 1,2- or 1,4-addition of hydroxylamine, depending on the solvent used. The biological activity of the obtained compounds was studied in a number of tests, including their effects on 17α-hydroxylase and 17,20-lyase activity of human CYP17A1 and the ability of selected compounds to affect the downstream androgen receptor signaling. Three derivatives diminished the transcriptional activity of androgen receptor and displayed reasonable antiproliferative activity. The candidate compound, 24j (17R)-17-((3-(2-hydroxypropan-2-yl)isoxazol-5-yl)methyl)-androst-5-en-3ß-ol, suppressed the androgen receptor signaling and decreased its protein level in two prostate cancer cell lines, LNCaP and LAPC-4. Interaction of compounds with CYP17A1 and the androgen receptor was confirmed and described by molecular docking.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/metabolismo , Simulação de Acoplamento Molecular , Esteroide 17-alfa-Hidroxilase/metabolismo , Antineoplásicos/química , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Esteroides/farmacologia , Esteroides/uso terapêutico , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA