Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(23): 16295-16305, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38816788

RESUMO

Atomically precise metal nanoclusters (NCs) have become an important class of catalysts due to their catalytic activity, high surface area, and tailored active sites. However, the design and development of bond-forming reaction catalysts based on copper NCs are still in their early stages. Herein, we report the synthesis of an atomically precise copper nanocluster with a planar core and unique shell, [Cu45(TBBT)29(TPP)4(C4H11N)2H14]2+ (Cu45) (TBBT: 4-tert-butylbenzenethiol; TPP: triphenylphosphine), in high yield via a one-pot reduction method. The resulting structurally well-defined Cu45 is a highly efficient catalyst for the hydroboration reaction of alkynes and alkenes. Mechanistic studies show that a single-electron oxidation of the in situ-formed ate complex enables the hydroboration via the formation of boryl-centered radicals under mild conditions. This work demonstrates the promise of tailored copper nanoclusters as catalysts for C-B heteroatom bond-forming reactions. The catalysts are compatible with a wide range of alkynes and alkenes and functional groups for producing hydroborated products.

2.
Mater Horiz ; 11(10): 2494-2505, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38477151

RESUMO

Atomically precise copper nanoclusters (NCs) are an emerging class of nanomaterials for catalysis. Their versatile core-shell architecture opens the possibility of tailoring their catalytically active sites. Here, we introduce a core-shell copper nanocluster (CuNC), [Cu29(StBu)13Cl5(PPh3)4H10]tBuSO3 (StBu: tert-butylthiol; PPh3: triphenylphosphine), Cu29NC, with multiple accessible active sites on its shell. We show that this nanocluster is a versatile catalyst for C-heteroatom bond formation (C-O, C-N, and C-S) with several advantages over previous Cu systems. When supported, the cluster can also be reused as a heterogeneous catalyst without losing its efficiency, making it a hybrid homogeneous and heterogeneous catalyst. We elucidated the atomic-level mechanism of the catalysis using density functional theory (DFT) calculations based on the single crystal structure. We found that the cooperative action of multiple neighboring active sites is essential for the catalyst's efficiency. The calculations also revealed that oxidative addition is the rate-limiting step that is facilitated by the neighboring active sites of the Cu29NC, which highlights a unique advantage of nanoclusters over traditional copper catalysts. Our results demonstrate the potential of nanoclusters for enabling the rational atomically precise design and investigation of multi-site catalysts.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38230646

RESUMO

The pursuit of developing sensors, characterized by their fluorescence-intensity enhancement or "turn-on" behavior, for accurately detecting noxious small molecules, such as amines, at minimal levels remains a significant challenge. Metal-organic frameworks (MOFs) have emerged as promising candidates as sensors as a result of their diverse structural features and tunable properties. This study introduces the rational synthesis of a new highly coordinated (6,12)-connected rare earth (RE) alb-MOF-3, by combining the nonanuclear 12-connected hexagonal prismatic building units, [RE9(µ3-O)2(µ3-X)12(OH)2(H2O)7(O2C-)12], with the 6-connected rigid trigonal prismatic extended triptycene ligand. The resulting Y-alb-MOF-3 material is distinguished by its high microporosity and Brunauer-Emmett-Teller surface area of approximately 1282 m2/g, which offers notable hydrolytic stability. Remarkably, it demonstrates selective detection capabilities for primary aliphatic amines in aqueous media, as evidenced by fluorescence turn-on behavior and photoluminescence (PL) titration measurements. This work emphasizes the potential of MOFs as sensors in advancing their selectivity and sensitivity toward various analytes.

4.
Angew Chem Int Ed Engl ; 62(26): e202303572, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37130272

RESUMO

Point defects in nanoparticles have long been hypothesized to play an important role in governing the particle's electronic structure and physicochemical properties. However, single point defects in material systems usually exist with other heterogeneities, obscuring the chemical role of the effects. Herein, we report the synthesis of novel atomically precise, copper hydride nanoclusters (NCs), [Cu28 H10 (C7 H7 S)18 (TPP)3 ] (Cu28 ; TPP: triphenylphosphine; C7 H7 S: o-thiocresol) with a defined defect in the gram scale via a one-pot reduction method. The Cu28 acts as a highly selective catalyst for C-C cross-couplings. The work highlights the potential of defective NCs as model systems for investigating individual defects, correlating defects with physiochemical properties, and rationally designing new nanoparticle catalysts.


Assuntos
Cobre , Nanopartículas , Eletrônica , Modelos Biológicos
5.
Adv Mater ; 35(25): e2300296, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37045553

RESUMO

Membrane technology, regarded as an environmentally friendly and sustainable approach, offers great potential to address the large energy penalty associated with the energy-intensive propylene/propane separation. Quest for molecular sieving membranes for this important separation is of tremendous interest. Here, a fluorinated metal-organic framework (MOF) material, known as KAUST-7 (KAUST: King Abdullah University of Science and Technology) with well-defined narrow 1D channels that can effectively discriminate propylene from propane based on a size-sieving mechanism, is successfully incorporated into a polyimide matrix to fabricate molecular sieving mixed matrix membranes (MMMs). Markedly, the surface functionalization of KAUST-7 nanoparticles with carbene moieties affords the requisite interfacial compatibility, with minimal nonselective defects at polymer-filler interfaces, for the fabrication of a molecular sieving MMM. The optimal membrane with a high MOF loading (up to 45 wt.%) displays a propylene permeability of ≈95 barrer and a mixed propylene/propane selectivity of ≈20, far exceeding the state-of-the-art upper bound limits. Moreover, the resultant membrane exhibits robust structural stability under practical conditions, including high pressures (up to 8 bar) and temperatures (up to 100 °C). The observed outstanding performance attests to the importance of surface engineering for the preparation and plausible deployment of high-performance MMMs for industrial applications.

7.
Inorg Chem ; 61(28): 10661-10666, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35771949

RESUMO

Edge-transitive nets are regarded as appropriate blueprints for the practice of reticular chemistry, and in particular, for the rational design and synthesis of functional metal-organic frameworks (MOFs). Among edge-transitive nets, type I edge-transitive nets have unique coordination figures, offering only one edge-transitive target for their associated expressed net-cBUs. Here, we report the reticulation of the binodal edge-transitive (6, 6)-c nia net in MOF chemistry, namely, the deliberate assembly of trinuclear aluminum clusters and 6-connected hexacarboxylate ligands into highly porous nia-MOFs. Further studies reveal that Al-nia-MOF-1 shows promising attributes as a storage media for oxygen (O2) at high-pressure adsorption studies.

8.
Inorg Chem ; 60(7): 4306-4312, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33726492

RESUMO

The emerging promise of few-atom metal catalysts has driven the need for developing metal nanoclusters (NCs) with ultrasmall core size. However, the preparation of metal NCs with single-digit metallic atoms and atomic precision is a major challenge for materials chemists, particularly for Ag, where the structure of such NCs remains unknown. In this study, we developed a shape-controlled synthesis strategy based on an isomeric dithiol ligand to yield the smallest crystallized Ag NC to date: [Ag9(1,2-BDT)6]3- (1,2-BDT = 1,2-benzenedithiolate). The NC's crystal structure reveals the self-assembly of two Ag square pyramids through preferential pyramidal vertex sharing of a single metallic Ag atom, while all other Ag atoms are incorporated in a motif with thiolate ligands, resulting in an elongated body-centered Ag9 skeleton. Steric hindrance and arrangement of the dithiolated ligands on the surface favor the formation of an anisotropic shape. Time-dependent density functional theory based calculations reproduce the experimental optical absorption features and identify the molecular orbitals responsible for the electronic transitions. Our findings will open new avenues for the design of novel single-digit metal NCs with directional self-assembled building blocks.

9.
Small ; 17(27): e2006839, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33739606

RESUMO

Due to their atomically precise structure, photoluminescent copper nanoclusters (Cu NCs) have emerged as promising materials in both fundamental studies and technological applications, such as bio-imaging, cell labeling, phototherapy, and photo-activated catalysis. In this work, a facile strategy is reported for the synthesis of a novel Cu NCs coprotected by thiolate and phosphine ligands, formulated as [Cu15 (PPh3 )6 (PET)13 ]2+ , which exhibits bright emission in the near-infrared (NIR) region (≈720 nm) and crystallization-induced emission enhancement (CIEE) phenomenon. Single crystal X-ray crystallography shows that the NC possesses an extraordinary distorted trigonal antiprismatic Cu6 core and a, unique among metal clusters, "tri-blade fan"-like structure. An in-depth structural investigation of the ligand shell combined with density functional theory calculations reveal that the extended CH···π and π-π intermolecular ligand interactions significantly restrict the intramolecular rotations and vibrations and, thus, are a major reason for the CIEE phenomena. This study provides a strategy for the controllable synthesis of structurally defined Cu NCs with NIR luminescence, which enables essential insights into the origins of their optical properties.


Assuntos
Cobre , Luminescência , Cristalização , Ligantes , Tomografia por Emissão de Pósitrons
10.
Nat Commun ; 11(1): 6099, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257662

RESUMO

Energy-efficient approaches to propylene/propane separation such as molecular sieving are of considerable importance for the petrochemical industry. The metal organic framework NbOFFIVE-1-Ni adsorbs propylene but not propane at room temperature and atmospheric pressure, whereas the isostructural SIFSIX-3-Ni does not exclude propane under the same conditions. The static dimensions of the pore openings of both materials are too small to admit either guest, signalling the importance of host dynamics for guest entrance to and transport through the channels. We use ab initio calculations together with crystallographic and adsorption data to show that the dynamics of the two framework-forming units, polyatomic anions and pyrazines, govern both diffusion and separation. The guest diffusion occurs by opening of the flexible window formed by four pyrazines. In NbOFFIVE-1-Ni, (NbOF5)2- anion reorientation locates propane away from the window, which enhances propylene/propane separation.

11.
J Am Chem Soc ; 142(49): 20547-20553, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33211955

RESUMO

Herein we report novel mesoporous zirconium-based metal-organic frameworks (MOFs) with zeolitic sodalite (sod) topology. Zr-sod-ZMOF-1 and -2 are constructed based on a novel cantellation design strategy. Distinctly, organic linkers are judiciously designed in order to promote the deployment of the 12-coordinated Zr hexanuclear molecular building block (MBB) as a tetrahedral secondary building unit, a prerequisite for zeolite-like nets. The resultant Zr-sod-ZMOFs exhibit mesopores with a diameter up to ≈43 Å, while the pore volume of 1.98 cm3·g-1 measured for Zr-sod-ZMOF-1 is the highest reported experimental value for zeolite-like MOFs based on MBBs as tetrahedral nodes.

12.
Phys Chem Chem Phys ; 22(40): 23073-23082, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33047772

RESUMO

We apply molecular simulations to screen a database of reported metal-organic framework structures from the computation-ready, experimental (CoRE) MOF database to identify materials potentially capable of separating propane and propene by diffusion. We report a screening workflow that uses descriptor analysis, conventional molecular dynamics (MD), and Nudged Elastic Band (NEB) energy barrier calculations at both classical force field and Density Functional Theory (DFT) levels. For the first time, the effects of framework flexibility on guest transport properties were fully considered in a screening process and led to the identification of candidate MOFs. The hits identified by this proof-of-concept workflow include ZIF-8 and ZIF-67 previously shown to have large differences in propane and propene diffusivities as well as two other materials that have not been tested experimentally yet. This work emphasises the importance of taking into account framework flexibility when studying guest transport in porous materials, demonstrates the potential of the data-driven identification of high-performance materials and highlights the ways of improving the predictive power of the screening workflow.

13.
Angew Chem Int Ed Engl ; 59(48): 21367-21371, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-32876969

RESUMO

Developing the competence of molecular sorbents for energy-saving applications, such as C8 separations, requires efficient, stable, scalable, and easily recyclable materials that can readily transition to commercial implementation. Herein, we report an azobenzene-based cage for the selective separation of p-xylene isomer across a range of C8 isomers in both vapor and liquid states with selectivity that is higher than the reported all-organic sorbents. The crystal structure shows non-porous cages that are separated by p-xylene molecules through selective CH-π interactions between the azo bonds and the methyl hydrogen atoms of the xylene molecules. This cage is stable in solution and can be regenerated directly under vacuum to be used in multiple cycles. We envisage that this work will promote the investigation of the azo bond as well as guest-induced crystal-to-crystal phase transition in non-porous organic solids for energy-intensive separations.

14.
Chem Commun (Camb) ; 56(12): 1883-1886, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31951225

RESUMO

In this work, a pre-designed Zr-based-MOF encompassing an organic linker with a redox active core is synthesized and its structure-property relationship as a supercapacitor electrode is investigated. An enhanced performance is revealed by the combination of this MOF's high porosity and redox core incorporation, which alters its double-layer and pseudocapacitance, respectively. An increase in the capacitance performance by a factor of two is achieved via post-synthetic structure rigidification using organic pillars.

15.
J Am Chem Soc ; 141(51): 20480-20489, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31794212

RESUMO

Minimal edge-transitive nets are regarded as suitable blueprints for the successful practice of reticular chemistry, and par excellence ideal for the deliberate design and rational construction of highly coordinated metal-organic frameworks (MOFs). We report the systematic generation of the highly connected minimal edge-transitive related nets (transitivity [32]) from parent edge-transitive nets (transitivity [21] or [11]), and their use as a guide for the deliberate design and directional assembly of highly coordinated MOFs from their associated net-coded building units (net-cBUs), 12-connected (12-c) double six-membered ring (d6R) building units. Notably, the generated related nets enclose the distinctive highly coordinated d6R (12-c) due to the subsequent coordination number increase in one node of the resultant new related net; that is, the (3,4,12)-c kce net is the (4,6)-c soc-related net, and the (3,6,12)-c kex and urx nets are the (6,6)-c nia-related nets. Intuitively, the combination of 12-connected hexagonal prismatic rare-earth (RE) nonanuclear [RE9(µ3-O)2(µ3-OH)12(O2C-)12] carboxylate-based clusters with purposely chosen organic or organic-inorganic hybrid building units led to the formation of the targeted highly coordinated MOFs based on selected minimal edge-transitive related nets. Interestingly, the kex-MOFs can alternatively be regarded as a zeolite-like MOF (ZMOF) based on the zeolite underlying topology afx, by considering the dodecacarboxylate ligand as a d6R building unit, delineating a new avenue toward the construction of ZMOFs through the composite building units as net-cBUs. This represents a significant step toward the effective discovery and design of novel minimal edge-transitive and highly coordinated materials using the d6Rs as net-cBUs.

16.
J Enzyme Inhib Med Chem ; 34(1): 1298-1306, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31307242

RESUMO

10H-1,9-diazaphenothiazine was obtained in the sulphurisation reaction of diphenylamine with elemental sulphur and transformed into new 10-substituted derivatives, containing alkyl and dialkylaminoalkyl groups at the thiazine nitrogen atom. The 1,9-diazaphenothiazine ring system was identified with advanced 1H and 13C NMR techniques (COSY, NOESY, HSQC and HMBC) and confirmed by X-ray diffraction analysis of the methyl derivative. The compounds exhibited significant anticancer activities against the human glioblastoma SNB-19, melanoma C-32 and breast cancer MDA-MB-231 cell lines. The most active 1,9-diazaphenothiazines were the derivatives with the propynyl and N, N-diethylaminoethyl groups being more potent than cisplatin. For those two compounds, the expression of H3, TP53, CDKN1A, BCL-2 and BAX genes was detected by the RT-QPCR method. The proteome profiling study showed the most probable compound action on SNB-19 cells through the intrinsic mitochondrial pathway of apoptosis. The 1,9-diazaphenotiazine system seems to be more potent than known isomeric ones (1,6-diaza-, 1,8-diaza-, 2,7-diaza- and 3,6-diazaphenothiazine).


Assuntos
Antineoplásicos/farmacologia , Fenotiazinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Fenotiazinas/síntese química , Fenotiazinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
J Am Chem Soc ; 141(24): 9585-9592, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31135146

RESUMO

Here, we demonstrate an approach to synthesizing and structurally characterizing three atomically precise anion-templated silver thiolate nanoclusters, two of which form one- and two-dimensional structural frameworks composed of bipyridine-linked nanocluster nodes (referred to as nanocluster-based frameworks, NCFs). We describe the critical role of the chloride (Cl-) template in controlling the nanocluster's nuclearity with atomic precision and the effect of a single Ag atom difference in the nanocluster's size in controlling the NCF dimensionality, modulating the optical properties, and improving the thermal stability. With atomically precise assembly and size control, nanoclusters could be widely adopted as building blocks for the construction of tunable cluster-based framework materials.

18.
J Am Chem Soc ; 141(5): 1847-1851, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30609360

RESUMO

Self-assembly allows structures to organize themselves into regular patterns by using local forces to find the lowest-energy configuration. However, assembling organic and inorganic building blocks in an ordered framework remains challenging due to  difficulties in rationally interfacing two dissimilar materials. Herein, the ensemble of polyoxometalates (POMs) and cyclodextrins (CDs) as molecular building blocks (MBBs) has yielded two unprecedented POM-CD-MOFs, namely [PW12O40]3- and α-CD MOF (POT-CD) as well as [P10Pd15.5O50]19- and γ-CD MOF (POP-CD), with distinct properties not shared by their isolated parent MBBs. Markedly, the POT-CD features a nontraditional enhanced Li storage behavior by virtue of a unique "amorphization and pulverization" process. This opens the door to a new generation of hybrid materials with tuned structures and customized functionalities.

19.
J Am Chem Soc ; 140(44): 14571-14575, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30293426

RESUMO

Here we introduce for the first time a metal-free trianglamine-based supramolecular organic framework, T-SOF-1, with permanent intrinsic porosity and high affinity to CO2. The capability of tuning the pore aperture dimensions is also demonstrated by molecular guest encapsulation to afford excellent CO2/CH4 separation for natural gas upgrading.

20.
Chem Commun (Camb) ; 54(68): 9414-9417, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30090900

RESUMO

Separation of paraffin isomers is of great importance in the refining industry because of their potential applications for energy efficiency, as reflected by their associated Research Octane Number (RON) values. Here, we report the synthesis of the first zeolite-like metal-organic framework (ZMOF) with ana topology that displays helicoidally/cylindrically-shaped channels with a pore-aperture size of ca. 3.8 × 6.2 Å. Markedly, such structural features offer potential for the selective separation of linear, and mono- and dibranched paraffins. Largely due to its tuned pore size and the presence of ions in the channels, ana-ZMOF possesses an excellent uniform charge density that allows the kinetic separation of n-pentane versus iso-pentane and n-butane vs. iso-butane, as well as the molecular exclusion of 2,2,4-trimethyl pentane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA