Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 6(12): 6556-6586, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33320618

RESUMO

Hydrogels are extraordinarily versatile by design and can enhance repair in diseased and injured musculoskeletal tissues. Biological fixation of these constructs is a significant determinant factor that is critical to the clinical success and functionality of regenerative technologies for musculoskeletal repair. In the context of an intervertebral disc (IVD) herniation, nucleus pulposus tissue protrudes through the ruptured annulus fibrosus (AF), consequentially impinging on spinal nerve roots and causing debilitating pain. Discectomy is the surgical standard of care to treat symptomatic herniation; however these procedures do not repair AF defects, and these lesions are a significant risk factor for recurrent herniation. Advances in tissue engineering utilize adhesive hydrogels as AF sealants; however these repair strategies have yet to progress beyond preclinical animal models because these biomaterials are often plagued by poor integration with AF tissue and lead to large variability in repair outcomes. These critical barriers to translation motivate this article to review the material composition of hydrogels that have been evaluated in situ for AF repair, proposed mechanisms of how these biomaterials interface with AF tissue, and their functional outcomes after treatment in order to inform the development of new hydrogels for AF repair. In this systematic review, we identify 18 hydrogel formulations evaluated for AF repair, all of which demonstrate large heterogeneity in their interfacing mechanisms and reported outcome measures to assess the effectiveness of repair. Hydrogels that covalently bond to AF tissue were found to be the most successful in improving IVD biomechanical properties from the injured state, but none were able to restore properties to the intact state suggesting that new repair strategies with innovative surface chemistries are an important future direction. We additionally review biomechanical evaluation methods and recommend standardization in the field of AF tissue engineering to establish mechanical benchmarks for translation and ensure clinical feasibility.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Hidrogéis/uso terapêutico , Degeneração do Disco Intervertebral/cirurgia , Engenharia Tecidual
2.
Biomaterials ; 258: 120309, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32823020

RESUMO

Intervertebral disc (IVD) herniation causes pain and disability, but current discectomy procedures alleviate pain without repairing annulus fibrosus (AF) defects. Tissue engineering strategies seal AF defects by utilizing hydrogel systems to prevent recurrent herniation, however current biomaterials are limited by poor adhesion to wetted tissue surfaces or low failure strength resulting in considerable risk of implant herniation upon spinal loading. Here, we developed a two-part repair strategy comprising a dual-modified (oxidized and methacrylated) glycosaminoglycan that can chemically adsorb an injectable interpenetrating network hydrogel composed of fibronectin-conjugated fibrin and poly (ethylene glycol) diacrylate (PEGDA) to covalently bond the hydrogel to AF tissue. We show that dual-modified hyaluronic acid imparts greater adhesion to AF tissue than dual-modified chondroitin sulfate, where the degree of oxidation is more strongly correlated with adhesion strength than methacrylation. We apply this strategy to an ex vivo bovine model of discectomy and demonstrate that PEGDA molecular weight tunes hydrogel mechanical properties and affects herniation risk, where IVDs repaired with low-modulus hydrogels composed of 20kDa PEGDA failed at levels at or exceeding discectomy, the clinical standard of care. This strategy bonds injectable hydrogels to IVD extracellular matrix proteins, is optimized to seal AF defects, and shows promise for IVD repair.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Adesivos , Animais , Materiais Biocompatíveis , Bovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA