RESUMO
Flowers are rich sources of bioactive antimicrobial, antioxidant, and anticancer components. This study aimed to determine the constituents of the ethanol extract of Malvaviscus arboreus red flower (ERF) by GC-MS analysis and HPLC identification of phenolic compounds and flavonoids, in addition to the 1HNMR fingerprint. The antimicrobial, antioxidant, and cytotoxic activities of the ERF were investigated. The GC-MS analysis revealed twenty-one components, while HPLC analysis revealed the presence of phenolic and flavonoid compounds. The ERF showed antifungal and antibacterial activity. The highest antibacterial activity was found against Vibrio damsela where a time-kill assay revealed a decline in the amount of viable V. damsela. For fungi, the highest activity was observed against Aspergillus terreus. Using the SRB test on HepG2, the anti-proliferative efficacy of the ERF was evaluated. Cell cycle analysis was utilized to determine autophagic cell death. The ERF prevented the proliferation of the HepG2 cell line with an IC50 of 67.182 µg/µL. The extract primarily promoted apoptosis in HepG2 cells by accumulating hypodiploid cells in the sub-G0/G1 phase, increased caspase 3/7 activity, and caused considerable autophagic cell death in apoptosis-deficient cells. Finally, the observed elevation of cancer cell death indicated that ERF had substantial anticancer potential against HepG2 cells.
RESUMO
CONTEXT: Some studies reported the chemical content and antimicrobial properties of Ocimum basilicum L. (Lamiaceae), relevant to the ecological variations in some areas of Egypt and other countries, yet no research was conducted on the plant cultivated in the central delta region of Egypt. Also, no previous data reported on inhibition of ß-lactamases by O. basilicum. OBJECTIVE: To assess ß-lactamases inhibition by O. basilicum extracts and the individual constituents. MATERIALS AND METHODS: Dried aerial parts of O. basilicum were extracted by hydrodistillation for preparation of essential oil and by methanol for non-volatile constituents. Essential oil content and the methanol extract were analysed by GC-MS and UPLC-PDA-MS/MS, respectively. Methyl cinnamate was isolated and analysed by NMR. Broth microdilution method was used to investigate the antimicrobial against resistant clinical isolates of Escherichia coli identified by double disc synergy, combination disc tests and PCR. The most active oil content was further tested with a nitrocefin kit for ß-lactamase inhibition and investigated by docking. RESULTS: O. basilicum was found to contain methyl cinnamate as the major content of the essential oil. More interestingly, methyl cinnamate inhibited ESBL ß-lactamases of the type CTX-M. The in vitro IC50 using nitrocefin kit was 11.6 µg/mL vs. 8.1 µg/mL for clavulanic acid as a standard ß-lactamase inhibitor. DISCUSSION AND CONCLUSIONS: This is the first study to report the inhibitory activity of O. basilicum oil and methyl cinnamate against ß-lactamase-producing bacteria. The results indicate that methyl cinnamate could be a potential alternative for ß-lactamase inhibition.
Assuntos
Lamiaceae , Ocimum basilicum , Óleos Voláteis , Antibacterianos/farmacologia , Cefalosporinas , Cinamatos , Ácido Clavulânico , Egito , Metanol , Ocimum basilicum/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , Inibidores de beta-Lactamases/farmacologia , beta-LactamasesRESUMO
Patients with diabetes mellitus often suffer from chronic wounds due to wound healing impairment. Considering the increased prevalence of diabetes, this would predispose significant medical, economic, and social problems. These chronic wounds are frequently infected with pathogenic bacteria like Pseudomonas aeruginosa, which complicates the situation and makes the wound healing process more difficult. Therefore, there is a high need for therapeutic alternatives to the currently available treatments. Plants are vital sources of many bioactive compounds with multiple biological activities. We elucidated the wound healing possibility and antibacterial effect of Cycas thouarsii n-butanol fraction (CTBF) for the first time. Also, CTBF's phytochemical fingerprint was investigated using the LC-MS/MS technology. Interestingly, CTBF revealed antibacterial activity against P. aeruginosa isolates with minimum inhibitory concentrations range 16-128 µg/mL. Regarding the wound healing potential, we used in vivo experiment on diabetic rats. Remarkably CTBF caused a significant reduction (p 0.05) in the levels of forkhead box O1, matrix metalloproteinases 9, and chemokine (C-C motif) ligand 20. Additionally, it led to a substantial increase (p 0.05) in the level of transforming growth factor ß1. Moreover, CTBF improved the wound histological features by increasing the collagen area percentage. Regarding the immunohistochemical studies, CTBF resulted in a strong positive epidermal growth factor and a moderate positive caspase 9 immunoreaction in the epidermis and sebaceous glands of the wounds. Therefore, CTBF could be a promising source of bioactive compounds with wound healing and antibacterial activities. Finally, molecular docking was attempted using MOE software to investigate the binding mode of the major identified compounds in the matrix metalloproteinase 9 (MMP-9) receptor (PDB code: 1GKC).
Assuntos
Cycas , Diabetes Mellitus Experimental , Ratos , Animais , Metaloproteinase 9 da Matriz , 1-Butanol/farmacologia , Fator de Crescimento Transformador beta1/farmacologia , Caspase 9 , Diabetes Mellitus Experimental/patologia , Butanóis/farmacologia , Simulação de Acoplamento Molecular , Cromatografia Líquida , Ligantes , Espectrometria de Massas em Tandem , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Pseudomonas aeruginosa , Compostos Fitoquímicos/farmacologia , Colágeno/farmacologia , Família de Proteínas EGFRESUMO
Nanocomposite hydrogel film was prepared from Polyvinyl alcohol [PVA], Corn Starch [CS], Linseed oil polyol [LP], and silver nanoparticles [NP]. LP was prepared by epoxidation and hydration of Linseed oil [LO]. IR and NMR supported the insertion of hydroxyl groups in LP by epoxide ring opening reaction at epoxidized LO. Silver NP were biosynthesized using aqueous leaves' extract from locally grown Ocimum forsskaolii Benth [LEO] plant. FTIR, XRD, UV and TEM confirmed the synthesis of NP (size 30 to 39 nm). Transparent and foldable hydrogel film resulted by blending the constituents (PVA, CS, LP and NP), crosslinking by glutaraldehyde, at room temperature, and showed expansion in water, different pH solutions, biodegradation and good antibacterial and antifungal activity against tested microbes. Linseed polyol influenced the structure, morphology, hydrophilicity, improved swelling ability and thermal stability and accelerated biodegradation of hydrogel films. NP were well adhered to LP globules that were embedded in PVA/CS matrix as strung set of beads (LP globules) decorated with black pearls (spherical NP). Silver NP conferred antimicrobial behavior to hydrogel film as observed by antimicrobial screening on different microbes. The results were encouraging and showed that such hydrogel films may find prospective applications in antimicrobial packaging.
Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Polímeros/química , Álcool de Polivinil/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Linho/química , Óleo de Semente do Linho , Nanocompostos/química , Polímeros/síntese química , Álcool de Polivinil/síntese química , Álcool de Polivinil/farmacologia , Prata/química , Amido/química , Zea mays/químicaRESUMO
Bioassay-guided fractionation was applied to the cytotoxic chloroform fraction of the red alga Polysiphonia lanosa. The major compounds of the most active fraction were identified using GLC-MS analysis as lanosol (1), methyl, ethyl, and n-propyl ethers of lanosol (1a, 1b, and 1c, respectively), and aldehyde of lanosol (2), although 1b appears to be an artifact arising during the fractionation procedure. These compounds and other known bromophenols were synthesized in addition to four novel isomers (3, 3a-c). The cytotoxic activities of all the synthetic compounds were determined against DLD-1 cells using the MTT assay. Compounds with IC(50) < 20 micromol were also tested against HCT-116 cells. Compound 3c (2,5-dibromo-3,4-dihydroxybenzyl n-propyl ether) was the most active compound against both cell lines (IC(50) = 1.72 and 0.80 micromol, respectively), and its effect on the cell cycle was studied using flow cytometry.