Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(4): 2621-2634, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457653

RESUMO

Postpolymerization modification of highly defined "scaffold" polymers is a promising approach for overcoming the existing limitations of controlled radical polymerization such as batch-to-batch inconsistencies, accessibility to different monomers, and compatibility with harsh synthesis conditions. Using multiple physicochemical characterization techniques, we demonstrate that poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) scaffolds can be efficiently modified with a coumarin derivative, doxorubicin, and camptothecin small molecule drugs. Subsequently, we show that coumarin-modified PVDMA has a high cellular biocompatibility and that coumarin derivatives are liberated from the polymer in the intracellular environment for cytosolic accumulation. In addition, we report the pharmacokinetics, biodistribution, and antitumor efficacy of a PVDMA-based polymer for the first time, demonstrating unique accumulation patterns based on the administration route (i.e., intravenous vs oral), efficient tumor uptake, and tumor growth inhibition in 4T1 orthotopic triple negative breast cancer (TNBC) xenografts. This work establishes the utility of PVDMA as a versatile chemical platform for producing polymer-drug conjugates with a tunable, stimuli-responsive delivery.


Assuntos
Lactonas , Neoplasias , Polímeros , Humanos , Distribuição Tecidual , Polímeros/química , Polivinil/química , Cloreto de Polivinila , Doxorrubicina/farmacologia
2.
Mol Pharm ; 19(12): 4705-4716, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36374992

RESUMO

Traditional approaches to vaccines use whole organisms to trigger an immune response, but they do not typically generate robust cellular-mediated immunity and have various safety risks. Subunit vaccines composed of proteins and/or peptides represent an attractive and safe alternative to whole organism vaccines, but they are poorly immunogenic. Though there are biological reasons for the poor immunogenicity of proteins and peptides, one other key to their relative lack of immunogenicity could be attributed to the poor pharmacokinetic properties of exogenously delivered proteins and peptides. For instance, peptides often aggregate at the site of injection and are not stable in biological fluids, proteins and peptides are rapidly cleared from circulation, and both have poor cellular internalization and endosomal escape. Herein, we developed a delivery system to address the lack of protein immunogenicity by overcoming delivery barriers as well as codelivering immune-stimulating adjuvants. The glycopolymeric nanoparticles (glycoNPs) are composed of a dual-stimuli-responsive block glycopolymer, poly[2-(diisopropylamino)ethyl methacrylate]-b-poly[(pyridyl disulfide ethyl methacrylate)-co-(methacrylamidoglucopyranose)] (p[DPA-b-(PDSMA-co-MAG)]). This polymer facilitates protein conjugation and cytosolic release, the pH-responsive release of lipophilic adjuvants, and pH-dependent membrane disruption to ensure cytosolic delivery of antigens. We synthesized p[DPA-b-(PDSMA-co-MAG)] by reversible addition-fragmentation chain transfer (RAFT) polymerization, followed by the formation and physicochemical characterization of glycoNPs using the p[DPA-b-(PDSMA-co-MAG)] building blocks. These glycoNPs conjugated the model antigen ovalbumin (OVA) and released OVA in response to elevated glutathione levels. Moreover, the glycoNPs displayed pH-dependent drug release of the model hydrophobic drug Nile Red while also exhibiting pH-responsive endosomolytic behavior as indicated by a red blood cell hemolysis assay. GlycoNPs coloaded with OVA and the toll-like receptor 7/8 (TLR-7/8) agonist Resiquimod (R848) activated DC 2.4 dendritic cells (DCs) significantly more than free OVA and R848 and led to robust antigen presentation of the OVA epitope SIINFEKL on major histocompatibility complex I (MHC-I). In sum, the dual-stimuli-responsive glycopolymer introduced here overcomes major protein and peptide delivery barriers and could vastly improve the immunogenicity of protein-based vaccines.


Assuntos
Antígenos , Nanopartículas , Animais , Camundongos , Adjuvantes Imunológicos , Ovalbumina , Nanopartículas/química , Vacinas de Subunidades Antigênicas , Adjuvantes Farmacêuticos , Metacrilatos , Células Dendríticas , Camundongos Endogâmicos C57BL
3.
Macromol Biosci ; 22(12): e2200281, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36125638

RESUMO

Macrophages play a diverse, key role in many pathologies, including inflammatory diseases, cardiovascular diseases, and cancer. However, many therapeutic strategies targeting macrophages suffer from systemic off-target toxicity resulting in notoriously narrow therapeutic windows. To address this shortcoming, the development of poly(propylene sulfide)-b-poly(methacrylamidoglucopyranose) [PPS-b-PMAG] diblock copolymer-based nanoparticles (PMAG NPs) capable of targeting macrophages and releasing drug in the presence of reactive oxygen species (ROS) is reported. PMAG NPs have desirable physicochemical properties for systemic drug delivery, including slightly negative surface charge, ≈100 nm diameter, and hemo-compatibility. Additionally, due to the presence of PPS in the NP core, PMAG NPs release drug cargo preferentially in the presence of ROS. Importantly, PMAG NPs display high cytocompatibility and are taken up by macrophages in cell culture at a rate ≈18-fold higher than PEGMA NPs-NPs composed of PPS-b-poly(oligoethylene glycol methacrylate). Computational studies indicate that PMAG NPs likely bind with glucose transporters such as GLUT 1/3 on the macrophage cell surface to facilitate high levels of internalization. Collectively, this study introduces glycopolymeric NPs that are uniquely capable of both receptor-ligand targeting to macrophages and ROS-dependent drug release and that can be useful in many immunotherapeutic settings.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/química , Macrófagos/metabolismo , Polímeros/química
4.
Biomater Sci ; 8(20): 5516-5537, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33049007

RESUMO

Cancer immunotherapy is exhibiting great promise as a new therapeutic modality for cancer treatment. However, immunotherapies are limited by the inability of some tumors to provoke an immune response. These tumors with a 'cold' immunological phenotype are characterized by low numbers of tumor-infiltrating lymphocytes, high numbers of immunosuppressive leukocytes (e.g. regulatory T cells, tumor-associated macrophages), and high production of immune-dampening signals (e.g. IL-10, TGF-ß, IDO-1). Strategies to boost the aptitude of tumors to initiate an immune response (i.e. boost tumor immunogenicity) will turn 'cold' tumors 'hot' and augment the anti-tumor efficacy of current immunotherapies. Approaches to boost tumor immunogenicity already show promise; however, multifaceted delivery and immunobiology challenges exist. For instance, systemic delivery of many immune-stimulating agents causes off-target toxicity and/or the development of autoimmunity, limiting the administrable dose below the threshold needed to achieve efficacy. Moreover, once administered in vivo, molecules such as the nucleic acid-based agonists for many pattern recognition receptors are either rapidly cleared or degraded, and don't efficiently traffic to the intracellular compartments where the receptors are located. Thus, these nucleic acid-based drugs are ineffective without a delivery system. Biomaterials-based approaches aim to enhance current strategies to boost tumor immunogenicity, enable novel strategies, and spare dose-limiting toxicities. Here, we review recent progress to improve cancer immunotherapies by boosting immunogenicity within tumors using immunostimulatory biomaterials.


Assuntos
Materiais Biocompatíveis , Neoplasias , Antígenos de Neoplasias , Humanos , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA