Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37760797

RESUMO

Molnupiravir is an antiviral drug against viral RNA polymerase activity approved by the FDA for the treatment of COVID-19, which is metabolized to ß-D-N4-hydroxycytidine (NHC) in human blood plasma. A novel method was developed and validated for quantifying NHC in human plasma within the analytical range of 10-10,000 ng/mL using high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) to support pharmacokinetics studies. For sample preparation, the method of protein precipitation by acetonitrile was used, with promethazine as an internal standard. Chromatographic separation was carried out on a Shim-pack GWS C18 (150 mm × 4.6 mm, 5 µm) column in a gradient elution mode. A 0.1% formic acid solution in water with 0.08% ammonia solution (eluent A, v/v) and 0.1% formic acid solution in methanol with 0.08% ammonia solution mixed with acetonitrile in a 4:1 ratio (eluent B, v/v) were used as a mobile phase. Electrospray ionization (ESI) was used as an ionization source. The developed method was validated in accordance with the Eurasian Economic Union (EAEU) rules, based on the European Medicines Agency (EMA) and Food and Drug Administration (FDA) guidelines for the following parameters and used within the analytical part of the clinical study of molnupiravir drugs: selectivity, suitability of standard sample, matrix effect, calibration curve, accuracy, precision, recovery, lower limit of quantification (LLOQ), carryover, and stability.

2.
Viruses ; 12(2)2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033013

RESUMO

Oncolytic viruses, including live attenuated measles virus (MV) vaccine strains, have recently been shown as promising therapeutic agents against human malignancies. In this study, the oncolytic potential of the attenuated vaccine strain Leningrad-16 (L-16) of MV was evaluated in a panel of human metastatic melanoma cell lines. The L-16 measles virus was shown to replicate within melanoma cells mediating direct cell killing of tumor cells, although all melanoma cell lines varied in regard to their ability to respond to L-16 MV infection, as revealed by the different pattern of the Interferon Stimulated Gene expression, cytokine release and mechanisms of cell death. Furthermore, the statistically significant L-16 measles virus related tumor growth inhibition was demonstrated in a melanoma xenograft model. Therefore, L-16 MV represents an appealing oncolytic platform for target delivery of therapeutic genes along with other attenuated measles virus strains.


Assuntos
Vírus do Sarampo/patogenicidade , Melanoma/terapia , Melanoma/virologia , Vírus Oncolíticos/patogenicidade , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Vacina contra Sarampo , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia Viral Oncolítica/métodos , Vacinas Atenuadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Pharm Sci ; 103(2): 367-77, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24301077

RESUMO

Literature and experimental data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate release (IR) solid oral dosage forms containing piroxicam in the free acid form are reviewed. Piroxicam solubility and permeability, its therapeutic use and therapeutic index, pharmacokinetic properties, data related to the possibility of excipient interactions and reported BE/bioavailability (BA), and corresponding dissolution data are taken into consideration. The available data suggest that according to the current biopharmaceutics classification system (BCS) and all current guidances, piroxicam would be assigned to BCS Class II. The extent of piroxicam absorption seems not to depend on manufacturing conditions or excipients, so the risk of bioinequivalence in terms of area under the curve (AUC) is very low, but the rate of absorption (i.e., BE in terms of Cmax ) can be affected by the formulation. Current in vitro dissolution methods may not always reflect differences in terms of Cmax for BCS Class II weak acids; however, minor differences in absorption rate of piroxicam would not subject the patient to unacceptable risks: as piroxicam products may be taken before or after meals, the rate of absorption cannot be considered crucial to drug action. Therefore, a biowaiver for IR piroxicam solid oral dosage form is considered feasible, provided that (a) the test product contains only excipients, which are also present in IR solid oral drug products containing piroxicam, which have been approved in ICH or associated countries, for instance, those presented in Table 3 of this paper; (b) both the test and comparator drug products dissolve 85% in 30 min or less at pH 1.2, 4.5, and 6.8; and (c) the test product and comparator show dissolution profile similarity in pH 1.2, 4.5, and 6.8. When not all of these conditions can be fulfilled, BE of the products should be established in vivo.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Piroxicam/administração & dosagem , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Disponibilidade Biológica , Biofarmácia , Células CACO-2 , Química Farmacêutica , Excipientes , Interações Alimento-Droga , Meia-Vida , Humanos , Absorção Intestinal , Piroxicam/farmacocinética , Piroxicam/uso terapêutico , Ratos , Solubilidade , Estereoisomerismo , Equivalência Terapêutica , Distribuição Tecidual
4.
J Pharm Sci ; 101(10): 3593-603, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22786667

RESUMO

Literature and experimental data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate-release (IR) solid oral dosage forms containing ketoprofen are reviewed. Ketoprofen's solubility and permeability, its therapeutic use and therapeutic index, pharmacokinetic properties, data related to the possibility of excipient interactions, and reported BE/bioavailability (BA)/dissolution data were taken into consideration. The available data suggest that according to the current Biopharmaceutics Classification System (BCS) and all current guidances, ketoprofen is a weak acid that would be assigned to BCS Class II. The extent of ketoprofen absorption seems not to depend on formulation or excipients, so the risk of bioinequivalence in terms of area under the curve is very low, but the rate of absorption (i.e., BE in terms of peak plasma concentration, C(max) ) can be altered by formulation. Current in vitro dissolution methods may not always reflect differences in terms of C(max) for BCS Class II weak acids; however, such differences in absorption rate are acceptable for ketoprofen with respect to patient risks. As ketoprofen products may be taken before or after meals, the rate of absorption cannot be considered crucial to drug action. Therefore, a biowaiver for IR ketoprofen solid oral dosage form is considered feasible, provided that (a) the test product contains only excipients present also in IR solid oral drug products containing ketoprofen, which are approved in International Conference on Harmonisation or associated countries, for instance, as presented in this paper; (b) both the test drug product and the comparator dissolve 85% in 30 min or less in pH 6.8 buffer; and (c) test product and comparator show dissolution profile similarity in pH 1.2, 4.5, and 6.8. When one or more of these conditions are not fulfilled, BE should be established in vivo.


Assuntos
Cetoprofeno/administração & dosagem , Cetoprofeno/química , Absorção , Administração Oral , Disponibilidade Biológica , Química Farmacêutica/métodos , Formas de Dosagem , Excipientes/química , Humanos , Cetoprofeno/farmacocinética , Permeabilidade , Solubilidade , Equivalência Terapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA