Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12695, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830976

RESUMO

Two-dimensional (2D) materials can be effectively functionalized by chemically modified using doping. Very recently, a flat AgSe monolayer was successfully prepared through direct selenization of the Ag(111) surface. Besides, the results indicate that the AgSe monolayer like CuSe, has a honeycomb lattice. Motivated by the experimental outcomes, in this work, employing first-principles calculations, we systematically investigate the electronic and optical properties of AgSe and CuSe monolayers, as well as the impact of alkali metals (Li, Na and K). Without functionalization, both the CuSe and AgSe monolayers exhibit metallic characteristics. The Li (Na)-CuSe and Na (K)-AgSe systems are dynamically stable while, the K- and Li-CuSe and Li-AgSe are dynamically unstable. Interestingly, the functionalized CuSe system with Li and Na atom as well as AgSe with K and Na atom, can open the band gaps, leading to the actualization of metal to semiconductor transitions. Our results show that, the electronic characteristics of the Na-CuSe/AgSe system can be modulated by adjusting the adsorption heights, which gives rise to the change in the electronic properties and the band gap may be controlled. Furthermore, from the optical properties we can find that the K-AgSe system is the best candidate monolayer to absorb infrared radiation and visible light. Consequently, our findings shed light on the functionalization of 2D materials based CuSe and AgSe monolayers and can potentially enhance and motivate studies in producing these monolayers for current nanodevices and future applications.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(2 Pt 2): 026401, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21929114

RESUMO

Fluctuations can give useful information about the system under study. Here, particle density fluctuations in magnetically confined toroidal plasmas are studied using noise theory. Homogenous and stationary statistics are considered and correlations of fluctuations are calculated for markovian systems. The relaxation of fluctuations is modeled by the space-fractional diffusion equation. Effects of different parameters of this model on correlations have been obtained. The results identify the two fluctuating regimes observed in experiments, which are related to diffusive and wave propagation of the mass in the system.

3.
J Nanosci Nanotechnol ; 11(6): 5365-73, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21770190

RESUMO

We studied the mechanical properties and wear performance of AISI 1045 (Ck45) carbon steel under the influence of pulsed plasma nitriding. The treatments were performed at temperatures of 500 and 550 degrees C in N2:H2 gas ratios of 1:3 and 3:1 and the working pressure of 10 mbar for 1 to 4 hours. Samples were examined by X-ray diffraction, optical, electron and atomic force microscopy, microhardness tests, roughness measurements and wear tests. Nitride layers were mainly composed of epsilon-(Fe2-3N) or gamma'-(Fe4N) depending on the gas ratio and/or temperature and time. When the nitriding time is increased, the composition of the compound layer varies from monophase gamma'-(Fe4N) to the two phase of epsilon-(Fe2-3N) and gamma'-(Fe4N). The highest thickness and hardness of the layers were obtained at 550 degrees C in the N2:H2 gas ratios of 3:1 for 4 h. The topographical evolution and surface roughness of the samples showed that all the roughness parameters increase with increasing the temperature. The friction coefficient of all samples was higher than that of untreated material. Wear performance of all nitrided samples was significantly better than that of untreated material.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(6 Pt 2): 066404, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21230744

RESUMO

By using a recently proposed numerical method, the fractional diffusion equation with memory in a finite domain is solved for different asymmetry parameters and fractional orders. Some scaling laws are revisited in this condition, such as growth rate in a distance from pulse perturbation, the time when the perturbative peak reaches the other points, and advectionlike behavior as a result of asymmetry and memory. Conditions for negativity and instability of solutions are shown. Also up-hill transport and its time-space region are studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA