RESUMO
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder in children caused by a point mutation in the lamin A gene, resulting in a toxic form of lamin A called progerin. Accelerated atherosclerosis leading to heart attack and stroke are the major causes of death in these patients. Endothelial cell (EC) dysfunction contributes to the pathogenesis of HGPS related cardiovascular diseases (CVD). Endothelial cell-cell communications are important in the development of the vasculature, and their disruptions contribute to cardiovascular pathology. However, it is unclear how progerin interferes with such communications that lead to vascular dysfunction. An antibody array screening of healthy and HGPS patient EC secretomes identified Angiopoietin-2 (Ang2) as a down-regulated signaling molecule in HGPS ECs. A similar down-regulation of Ang2 mRNA and protein was detected in the aortas from an HGPS mouse model. Addition of Ang2 to HGPS ECs rescues vasculogenesis, normalizes endothelial cell migration and gene expression, and restores nitric oxide bioavailability through eNOS activation. Furthermore, Ang2 addition reverses unfavorable paracrine effects of HGPS ECs on vascular smooth muscle cells. Lastly, by utilizing adenine base editor (ABE)-corrected HGPS ECs and progerin-expressing HUVECs, we demonstrated a negative correlation between progerin and Ang2 expression. Lastly, our results indicated that Ang2 exerts its beneficial effect in ECs through Tie2 receptor binding, activating an Akt-mediated pathway. Together, these results provide molecular insights into EC dysfunction in HGPS and suggest that Ang2 treatment has potential therapeutic effects in HGPS-related CVD.
RESUMO
Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disorder that causes severe cardiovascular disease, resulting in the death of patients in their teenage years. The disease pathology is caused by the accumulation of progerin, a mutated form of the nuclear lamina protein, lamin A. Progerin binds to the inner nuclear membrane, disrupting nuclear integrity, and causes severe nuclear abnormalities and changes in gene expression. This results in increased cellular inflammation, senescence, and overall dysfunction. The molecular mechanisms by which progerin induces the disease pathology are not fully understood. Progerin's detrimental impact on nuclear mechanics and the role of the nucleus as a mechanosensor suggests dysfunctional mechanotransduction could play a role in HGPS. This is especially relevant in cells exposed to dynamic, continuous mechanical stimuli, like those of the vasculature. The endothelial (ECs) and smooth muscle cells (SMCs) within arteries rely on physical forces produced by blood flow to maintain function and homeostasis. Certain regions within arteries produce disturbed flow, leading to an impaired transduction of mechanical signals, and a reduction in cellular function, which also occurs in HGPS. In this review, we discuss the mechanics of nuclear mechanotransduction, how this is disrupted in HGPS, and what effect this has on cell health and function. We also address healthy responses of ECs and SMCs to physiological mechanical stimuli and how these responses are impaired by progerin accumulation.
RESUMO
Atherosclerosis is a primary precursor of cardiovascular disease (CVD), the leading cause of death worldwide. While proprotein convertase subtilisin/kexin 9 (PCSK9) contributes to CVD by degrading low-density lipoprotein receptors (LDLR) and altering lipid metabolism, PCSK9 also influences vascular inflammation, further promoting atherosclerosis. Here, we utilized a vascular microphysiological system to test the effect of PCSK9 activation or repression on the initiation of atherosclerosis and to screen the efficacy of a small molecule PCSK9 inhibitor. We have generated PCSK9 over-expressed (P+) or repressed (P-) human induced pluripotent stem cells (iPSCs) and further differentiated them to smooth muscle cells (viSMCs) or endothelial cells (viECs). Tissue-engineered blood vessels (TEBVs) made from P+ viSMCs and viECs resulted in increased monocyte adhesion compared to the wild type (WT) or P- equivalents when treated with enzyme-modified LDL (eLDL) and TNF-α. We also found significant viEC dysfunction, such as increased secretion of VCAM-1, TNF-α, and IL-6, in P+ viECs treated with eLDL and TNF-α. A small molecule compound, NYX-1492, that was originally designed to block PCSK9 binding with the LDLR was tested in TEBVs to determine its effect on lowering PCSK9-induced inflammation. The compound reduced monocyte adhesion in P+ TEBVs with evidence of lowering secretion of VCAM-1 and TNF-α. These results suggest that PCSK9 inhibition may decrease vascular inflammation in addition to lowering plasma LDL levels, enhancing its anti-atherosclerotic effects, particularly in patients with elevated chronic inflammation.
RESUMO
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare, fatal genetic disease that accelerates atherosclerosis. With a limited pool of HGPS patients, clinical trials face unique challenges and require reliable preclinical testing. We previously reported a 3D tissue engineered blood vessel (TEBV) microphysiological system fabricated with iPSC-derived vascular cells from HGPS patients. HGPS TEBVs exhibit features of HGPS atherosclerosis including loss of smooth muscle cells, reduced vasoactivity, excess extracellular matrix (ECM) deposition, inflammatory marker expression, and calcification. We tested the effects of HGPS therapeutics Lonafarnib and Everolimus separately and together, currently in Phase I/II clinical trial, on HGPS TEBVs. Everolimus decreased reactive oxygen species levels, increased proliferation, reduced DNA damage in HGPS vascular cells, and improved vasoconstriction in HGPS TEBVs. Lonafarnib improved shear stress response of HGPS iPSC-derived endothelial cells (viECs) and reduced ECM deposition, inflammation, and calcification in HGPS TEBVs. Combination treatment with Lonafarnib and Everolimus produced additional benefits such as improved endothelial and smooth muscle marker expression and reduced apoptosis, as well as increased TEBV vasoconstriction and vasodilation. These results suggest that a combined trial of both drugs may provide cardiovascular benefits beyond Lonafarnib, if the Everolimus dose can be tolerated.
Assuntos
Aterosclerose , Calcinose , Células-Tronco Pluripotentes Induzidas , Progéria , Humanos , Progéria/genética , Everolimo/farmacologia , Everolimo/uso terapêutico , Everolimo/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Aterosclerose/metabolismo , Calcinose/metabolismo , Lamina Tipo A/genéticaRESUMO
Regulators have established safety requirements for food packaging raw materials and finished products, including by-products of polymer synthesis known as non-intentionally added substances (NIAS). However, there are no official guidance or regulations for best practices to evaluate the safety of NIAS. Here we described the process we followed to identify, characterize, and prioritize for safety assessment low molecular weight NIAS from an epoxy coating (V70) made with tetramethyl bisphenol F-based diglycidyl ether resin (TMBPF-DGE). We assembled a database of 15000 potential oligomers with masses up to 1000 Da and conducted extraction and migration testing of V70 coating. Acetonitrile extract contained higher number and concentration of substances compared to ethanolic-based food simulants. The extract contained 16 substances with matches in the database with estimated concentration of 18.27 µg/6 dm2; seven of these substances have potentially genotoxic oxirane functionality. TMBPF-DGE + hydroquinone (TMBPF-DGE + HQ) was most abundant (55% of total concentration) and was synthesized and prioritized for safety assessment. TMBPF-DGE + HQ exposure from can beverage was estimated at 5.2 µg/person/day, and it was not mutagenic or genotoxic in in vitro assays. The overall mixture of substances that migrated into ethanolic simulant was also negative in the mutagenicity bioassay. Our findings suggest that exposure to TMBPF-DGE + HQ from the V70 coating is exceedingly small and that the coating migrates are not genotoxic.
Assuntos
Embalagem de Alimentos , Polímeros , Humanos , Polímeros/toxicidade , Alimentos , Cromatografia Gasosa , Mutagênicos/análise , Alérgenos/análise , Contaminação de Alimentos/análiseRESUMO
Pancreatic ß cell function is compromised in diabetes and is typically assessed by measuring insulin secretion during glucose stimulation. Traditionally, measurement of glucose-stimulated insulin secretion involves manual liquid handling, heterogeneous stimulus delivery, and enzyme-linked immunosorbent assays that require large numbers of islets and processing time. Though microfluidic devices have been developed to address some of these limitations, traditional methods for islet testing remain the most common due to the learning curve for adopting microfluidic devices and the incompatibility of most device materials with large-scale manufacturing. We designed and built a thermoplastic, microfluidic-based Islet on a Chip compatible with commercial fabrication methods, that automates islet loading, stimulation, and insulin sensing. Inspired by the perfusion of native islets by designated arterioles and capillaries, the chip delivers synchronized glucose pulses to islets positioned in parallel channels. By flowing suspensions of human cadaveric islets onto the chip, we confirmed automatic capture of islets. Fluorescent glucose tracking demonstrated that stimulus delivery was synchronized within a two-minute window independent of the presence or size of captured islets. Insulin secretion was continuously sensed by an automated, on-chip immunoassay and quantified by fluorescence anisotropy. By integrating scalable manufacturing materials, on-line, continuous insulin measurement, and precise spatiotemporal stimulation into an easy-to-use design, the Islet on a Chip should accelerate efforts to study and develop effective treatments for diabetes.
Assuntos
Insulina/análise , Ilhotas Pancreáticas/química , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Estimulação Elétrica , Desenho de Equipamento , Humanos , Técnicas Analíticas Microfluídicas/instrumentaçãoRESUMO
The neurovascular unit (NVU) regulates metabolic homeostasis as well as drug pharmacokinetics and pharmacodynamics in the central nervous system. Metabolic fluxes and conversions over the NVU rely on interactions between brain microvascular endothelium, perivascular pericytes, astrocytes and neurons, making it difficult to identify the contributions of each cell type. Here we model the human NVU using microfluidic organ chips, allowing analysis of the roles of individual cell types in NVU functions. Three coupled chips model influx across the blood-brain barrier (BBB), the brain parenchymal compartment and efflux across the BBB. We used this linked system to mimic the effect of intravascular administration of the psychoactive drug methamphetamine and to identify previously unknown metabolic coupling between the BBB and neurons. Thus, the NVU system offers an in vitro approach for probing transport, efficacy, mechanism of action and toxicity of neuroactive drugs.
Assuntos
Células Endoteliais/metabolismo , Dispositivos Lab-On-A-Chip , Neurônios/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Humanos , Metanfetamina/farmacologia , FenótipoRESUMO
Eukaryotic elongation factor 2 kinase (eEF-2K) is an atypical protein kinase regulated by Ca(2+) and calmodulin (CaM). Its only known substrate is eukaryotic elongation factor 2 (eEF-2), whose phosphorylation by eEF-2K impedes global protein synthesis. To date, the mechanism of eEF-2K autophosphorylation has not been fully elucidated. To investigate the mechanism of autophosphorylation, human eEF-2K was coexpressed with λ-phosphatase and purified from bacteria in a three-step protocol using a CaM affinity column. Purified eEF-2K was induced to autophosphorylate by incubation with Ca(2+)/CaM in the presence of MgATP. Analyzing tryptic or chymotryptic peptides by mass spectrometry monitored the autophosphorylation over 0-180 min. The following five major autophosphorylation sites were identified: Thr-348, Thr-353, Ser-445, Ser-474, and Ser-500. In the presence of Ca(2+)/CaM, robust phosphorylation of Thr-348 occurs within seconds of addition of MgATP. Mutagenesis studies suggest that phosphorylation of Thr-348 is required for substrate (eEF-2 or a peptide substrate) phosphorylation, but not self-phosphorylation. Phosphorylation of Ser-500 lags behind the phosphorylation of Thr-348 and is associated with the Ca(2+)-independent activity of eEF-2K. Mutation of Ser-500 to Asp, but not Ala, renders eEF-2K Ca(2+)-independent. Surprisingly, this Ca(2+)-independent activity requires the presence of CaM.
Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Quinase do Fator 2 de Elongação/metabolismo , Serina/genética , Treonina/genética , Sequência de Aminoácidos , Sítios de Ligação , Quinase do Fator 2 de Elongação/genética , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Fosforilação , Treonina/metabolismoRESUMO
In every synapse, a large number of proteins interact with other proteins in order to carry out signaling and transmission in the central nervous system. In this study, we used interaction proteomics to identify novel synaptic protein interactions in mouse cortical membranes under native conditions. Using immunoprecipitation, immunoblotting, and mass spectrometry, we identified a number of novel synaptic protein interactions involving soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), calcium-activated potassium channel (BKCa) alpha subunits, and dynamin-1. These novel interactions offer valuable insight into the protein-protein interaction network in intact synapses that could advance understanding of vesicle trafficking, release, and recycling.
Assuntos
Encéfalo/metabolismo , Dinamina I/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Proteômica , Proteínas SNARE/metabolismo , Sinapses/metabolismo , Animais , Immunoblotting , Imunoprecipitação , Masculino , Espectrometria de Massas , Camundongos , Ligação Proteica , Proteína 2 Associada à Membrana da Vesícula/metabolismoRESUMO
The reactivity of p-difluorobenzene/methanol cluster ions has been investigated by using triple quadrupole mass spectrometry and DFT calculations. The present study was performed in light of a recent investigation of p-difluorobenzene/methanol (P = F-C(6)H(4)-F and M = CH(3)OH) heterocluster ions where the solvent-catalyzed formation of p-fluoroanisole (A = CH(3)O-C(6)H(4)-F) was observed in P(M)(2)(+) clusters and not in PM(+) clusters. The results of our mass selected cluster ion study and theoretical calculations confirm that a single extra molecule of methanol can lower the reaction activation energy barrier in agreement with previous work for smaller clusters (PM(+) and P(M)(2)(+)). However, we also observe that P(M)(3)(+) and P(M)(4)(+) clusters undergo evaporative loss of neutral methanol to establish the P(M)(2)(+) cluster before reacting. P(M)(n>4)(+) clusters are capable of reacting through multiple pathways, in some cases generating a 1,4-dimethoxybenzene (B = CH(3)O-C(6)H(4)-OCH(3)) product via two separate substitution reactions within the same cluster ion. DFT calculations were employed to model the structures of the parent cluster ions, and transition state calculations were used to evaluate the activation energy for the p-fluoroanisole-forming substitution reaction. The calculations suggest that the reaction proceeds through a transition state containing a six-member hydrogen-bonded ring involving a reacting methanol and a second methanol that significantly lowers the activation energy.
Assuntos
Fluorbenzenos/química , Metanol/química , Anisóis/química , Íons/químicaRESUMO
To understand the interaction between toluene and methanol, the chemical reactivity of [(C6H5CH3)(CH3OH) n=1-7](+) cluster ions has been investigated via tandem quadrupole mass spectrometry and through calculations. Collision Induced Dissociation (CID) experiments show that the dissociated intracluster proton transfer reaction from the toluene cation to methanol clusters, forming protonated methanol clusters, only occurs for n = 2-4. For n = 5-7, CID spectra reveal that these larger clusters have to sequentially lose methanol monomers until they reach n = 4 to initiate the deprotonation of the toluene cation. Metastable decay data indicate that for n = 3 and n = 4 (CH3OH)3H(+) is the preferred fragment ion. The calculational results reveal that both the gross proton affinity of the methanol subcluster and the structure of the cluster itself play an important role in driving this proton transfer reaction. When n = 3, the cooperative effect of the methanols in the subcluster provides the most important contribution to allow the intracluster proton transfer reaction to occur with little or no energy barrier. As n >or= 4, the methanol subcluster is able to form ring structures to stabilize the cluster structures so that direct proton transfer is not a favored process. The preferred reaction product, the (CH3OH)3H(+) cluster ion, indicates that this size-restricted reaction is driven by both the proton affinity and the enhanced stability of the resulting product.
Assuntos
Metanol/química , Prótons , Tolueno/química , Elétrons , Espectrometria de Massas , Teoria QuânticaRESUMO
Shotgun proteomic analysis usually employs multidimensional separations with the first dimension most commonly being strong cation exchange (SCX) liquid chromatography (LC). SCX-LC is necessarily a serial process for preparation of multiple samples. Here, we apply a newly available tool, off-gel electrophoresis (OGE), for first-dimension separation of peptide mixtures from digests of cerebrospinal fluid (CSF), a complex and low total protein-containing sample. OGE first-dimension fractionation enabled identification of a total of 156 unique proteins compared to 115 identified in previous work using first-dimension SCX fractionation. OGE can be used to process multiple samples unattended with easy retrieval of the separated fractions. Thus, shotgun analysis using OGE as the first-dimension separation offers a significant advantage both in terms of sample throughput as well as increased numbers of identified proteins.
Assuntos
Líquido Cefalorraquidiano/química , Eletroforese/métodos , Focalização Isoelétrica/métodos , Proteínas/análise , Proteômica/métodos , Humanos , Espectrometria de Massas , Dados de Sequência MolecularRESUMO
Biological samples can contain proteins with concentrations that span more than 10 orders of magnitude. Given the limited dynamic range of analysis methods, observation of proteins present at the lower concentrations requires depletion of high-abundance proteins, or other means of reducing the dynamic range of concentrations. Hexapeptide diversity library beads have been used to bind proteins in a complex sample up to a given saturation limit, effectively truncating the maximum concentration of proteins at a desired level. To avoid the potential problem of susceptibility of the hexapeptides to cleavage by proteases in the sample and/or bacterial degradation, peptide analogues that exhibit similar binding characteristics to peptides can be used in place of peptides. We report here the use of hexameric peptoid diversity library beads to reduce the dynamic range of protein concentrations in human cerebrospinal fluid (CSF). Using this method in conjunction with 2D LC/MS/MS analyses, we identified 200 unique proteins, about twice the number identified in untreated CSF.
Assuntos
Líquido Cefalorraquidiano/química , Biblioteca de Peptídeos , Peptídeos/análise , Peptídeos/química , Proteoma/análise , Técnicas de Química Combinatória , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Estrutura Molecular , Peptídeos/genética , Ligação ProteicaRESUMO
Optimal proteomic analysis of human cerebrospinal fluid (CSF) requires depletion of high-abundance proteins to facilitate observation of low-abundance proteins. The performance of two immunodepletion (MARS, Agilent Technologies and ProteoSeek, Pierce Biotechnology) and one ultrafiltration (50 kDa molecular weight cutoff filter, Millipore Corporation) methods for depletion of abundant CSF proteins were compared using a graphical method to access the depth of analysis using "marker proteins" with known normal concentration ranges. Two-dimensional LC/MS/MS analysis of each depleted sample yielded 171 and 163 unique protein identifications using the MARS and ProteoSeek immunodepletion methods, respectively, while only 46 unique proteins were identified using a 50 kDa molecular weight cutoff filter. The relative abundance of the identified proteins was estimated using total spectrum counting and compared to the concentrations of 45 known proteins in CSF as markers of the analysis depth. Results of this work suggest a clear need for methodology designed specifically for depletion of high-abundance proteins in CSF, as depletion methods designed to deplete high-abundance serum proteins showed little improvement in analysis depth compared to analysis without depletion. The marker protein method should be generally useful for assessing depth of analysis in the comparison of proteomic analysis methods.
Assuntos
Líquido Cefalorraquidiano/química , Proteômica/métodos , Biomarcadores/metabolismo , Soluções Tampão , Cátions , Cromatografia por Troca Iônica , Cromatografia Líquida/métodos , Humanos , Imunoglobulina G/química , Espectrometria de Massas/métodos , Peso Molecular , Peptídeos/química , Proteínas/química , ProteomaRESUMO
To describe variations in nutrition services offered in a nationally representative sample of out-patient cardiac rehabilitation programs by presence of a registered dietitian (RD), a survey was conducted of 250 randomly selected centers from 1,111 US outpatient cardiac rehabilitation centers in the 1998/1999 Cardiac Rehabilitation Directory of the American Association of Cardiovascular and Pulmonary Rehabilitation. A total of 190 of the 250 surveys (76%) were returned. Nutrition services offered by programs polled included distribution of nutrition pamphlets, one-on-one nutrition counseling, group nutrition classes, guest lectures on nutrition, and cooking demonstrations. Cardiac rehabilitation programs with an RD offered significantly more nutrition services on average (4.2+/-1.2) than programs without an RD (3.5+/-1.1, P=.01). Programs with RDs were more likely to offer one-on-one nutrition counseling than programs without them (98% and 80% respectively, P<.001), and they were also more likely to offer cooking demonstrations (43% and 17% respectively, P=.02). More, and a greater variety of, nutrition services are offered in cardiac rehabilitation programs that have an RD. Without an RD, exercise physiologists and registered nurses often provide some, but fewer and different, nutrition services.
Assuntos
Atenção à Saúde , Dietética , Cardiopatias/dietoterapia , Cardiopatias/reabilitação , Ciências da Nutrição/educação , Culinária/métodos , Aconselhamento , Humanos , Ambulatório Hospitalar , Inquéritos e QuestionáriosRESUMO
OBJECTIVE: To evaluate the effectiveness of nutrition education within an outpatient cardiac rehabilitation program. DESIGN: Subjects were assigned, according to participation in cardiac rehabilitation programs in two community hospitals within an integrated healthcare system, to either a treatment (n=54), or a control group (n=50). SUBJECTS/SETTING: One hundred four men and women, age range 35 to 85 years, participating in a 6-week cardiac rehabilitation program. Most were men (80%) and overweight. The majority presented with the diagnosis of myocardial infarction followed by coronary artery bypass surgery or percutaneous transluminal coronary angiography procedure. INTERVENTION: Subjects in the control group received usual nonindividualized nutrition education from cardiac rehabilitation therapists. Subjects in the treatment group attended two group nutrition education classes and one individual diet counseling session, all led by the same dietitian. MAIN OUTCOME MEASURES: Changes in fat, saturated fat, cholesterol, and carbohydrate intake, and restaurant eating habits as assessed by the Diet Habit Survey; changes in cardiac diet self-efficacy; and changes in health-related quality of life. Statistical analyses performed Group-by-time analysis of variance with repeated measures, chi2 test. RESULTS: The treatment group had greater improvement in Restaurant and Recipes scores on the Diet Habit Survey (2.6 vs 1.0) and a greater cardiac diet self-efficacy mean score (4.3) compared with the control group (3.8), with the greatest change in items related to eating in restaurants, away from home, or when alone. From entry into the program to discharge, the cholesterol-saturated fat index decreased significantly in the control group (from 57 to 48), and in the treatment group (from 51 to 42). The percent of energy from carbohydrate increased significantly in the control group (from 51% to 55%) and in the treatment group (from 53% to 57%). There were no differences between groups over the 3 time periods (baseline, 6 weeks, and 3-month follow-up) (n=39 for control group and n=47 for treatment group for all 3 time periods). APPLICATIONS/CONCLUSIONS: Nutrition education within an outpatient cardiac rehabilitation program can improve dietary choices at restaurants and boost self confidence in the ability to adhere to a lipid-lowering diet.