Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38133014

RESUMO

Memristors are recognized as crucial devices for future nonvolatile memory and artificial intelligence. Due to their typical neuron-synapse-like metal-insulator-metal(MIM) sandwich structure, they are widely used to simulate biological synapses and have great potential in advancing biological synapse simulation. However, the high switch voltage and inferior stability of the memristor restrict the broader application to the emulation of the biological synapse. In this study, we report a vertically structured memristor based on few-layer MoS2. The device shows a lower switching voltage below 0.6 V, with a high ON/OFF current ratio of 104, good stability of more than 180 cycles, and a long retention time exceeding 3 × 103 s. In addition, the device has successfully simulated various biological synaptic functions, including potential/depression propagation, paired-pulse facilitation (PPF), and long-term potentiation/long-term depression (LTP/LTD) modulation. These results have significant implications for the design of a two-dimensional transition-metal dichalcogenides composite material memristor that aim to mimic biological synapses, representing promising avenues for the development of advanced neuromorphic computing systems.

2.
ACS Appl Mater Interfaces ; 13(4): 5293-5301, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33492924

RESUMO

In organic photodetectors, photomultiplication is mainly originated from interfacial and/or bulk charge traps, which induces slow response due to the slow release of trapped charges and strongly limits the optimization of the overall performance. This study has exhibited a remarkable case that the gain (>1) and response speed of the lateral photodetectors are promoted simultaneously and effectively by increasing the trap ratio. For lateral photodetectors with silver nanoparticles and PDPPBTT:PC61BM bulk heterojunction, the gain increases from 12.7 to 19.8 and the fall time decreases from 313.4 to 172.9 ms as the PC61BM ratio increases from 5:1 to 1:1. The lateral photodetector structure with a long electrode distance has been testified to play the key role for simultaneous promotion compared with vertical photodiodes, allowing the charges to trap well in the PC61BM-rich phase at a high PC61BM ratio and accumulation of multiple built-in electric fields. The long channel distance and silver nanoparticles also effectively restrain the increment of dark current with PC61BM loading, resulting in a high detectivity of 1.7 × 1012 Jones under 0.031 mW cm-2 @ 820 nm. It is of great theoretical and practical value for the high-performance photodetectors with simultaneous high photomultiplication and quick response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA