Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 349, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965547

RESUMO

T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.


Assuntos
Basigina , COVID-19 , Linfopenia , SARS-CoV-2 , Humanos , Linfopenia/imunologia , Linfopenia/virologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/patologia , SARS-CoV-2/metabolismo , Basigina/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Síndrome da Liberação de Citocina/imunologia , Animais
2.
J Biomol Struct Dyn ; 40(3): 1109-1119, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32936048

RESUMO

Lymphopenia is considered one of the most characteristic clinical features of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 infects host cells via the interaction of its spike protein with the human angiotensin-converting enzyme 2 (hACE2) receptor. Since T lymphocytes display a very low expression level of hACE2, a novel receptor might be involved in the entry of SARS-CoV-2 into T cells. The transmembrane glycoprotein CD147 is highly expressed by activated T lymphocytes, and was recently proposed as a probable route for SARS-CoV-2 invasion. To understand the molecular basis of the potential interaction of SARS-CoV-2 to CD147, we have investigated the binding of the viral spike protein to this receptor in-silico. The results showed that this binding is dominated by electrostatic interactions involving residues Arg403, Asn481, and the backbone of Gly502. The overall binding arrangement shows the CD147 C-terminal domain interacting with the spike external subdomain in the grove between the short antiparallel ß strands, ß1' and ß2', and the small helix α1'. This proposed interaction was further confirmed using MD simulation and binding free energy calculation. These data contribute to a better understanding of the mechanism of infection of SARS-CoV-2 to T lymphocytes and could provide valuable insights for the rational design of adjuvant treatment for COVID-19. Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Linfopenia , Basigina , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
Adv Exp Med Biol ; 1312: 51-73, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33159305

RESUMO

Cardiovascular diseases top the list of fatal illnesses worldwide. Cardiac tissues is known to be one of te least proliferative in the human body, with very limited regenraive capacity. Stem cell therapy has shown great potential for treatment of cardiovascular diseases in the experimental setting, but success in human trials has been limited. Applications of stem cell therapy for cardiovascular regeneration necessitate understamding of the complex and unique structure of the heart unit, and the embryologic development of the heart muscles and vessels. This chapter aims to provide an insight into cardiac progenitor cells and their potential applications in regenerative medicine. It also provides an overview of the embryological development of cardiac tissue, and the major findings on the development of cardiac stem cells, their characterization, and differentiation, and their regenerative potential. It concludes with clinical applications in treating cardiac disease using different approaches, and concludes with areas for future research.


Assuntos
Células-Tronco Multipotentes , Transplante de Células-Tronco , Diferenciação Celular , Coração , Humanos , Miocárdio , Miócitos Cardíacos , Medicina Regenerativa
4.
Adv Exp Med Biol ; 1247: 109-123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31802446

RESUMO

Female aging is one of the most important factors that impacts human reproduction. With aging, there is a natural decline in female fertility. The decrease in fertility is slow and steady in women aged 30-35 years; however, this decline is accelerated after the age of 35 due to decreases in the ovarian reserve and oocyte quality. Human oocyte aging is affected by different environmental factors, such as dietary habits and lifestyle. The ovarian microenvironment contributes to oocyte aging and longevity. The immediate oocyte microenvironment consists of the surrounding cells. Crosstalk between the oocyte and microenvironment is mediated by direct contact with surrounding cells, the extracellular matrix, and signalling molecules, including hormones, growth factors, and metabolic products. In this review, we highlight the different microenvironmental factors that accelerate human oocyte aging and decrease oocyte function. The ovarian microenvironment and the stress that is induced by environmental pollutants and a poor diet, along with other factors, impact oocyte quality and function and contribute to accelerated oocyte aging and diseases of infertility.


Assuntos
Senescência Celular/fisiologia , Meio Ambiente , Fertilidade/fisiologia , Oócitos/citologia , Animais , Feminino , Humanos , Infertilidade Feminina/patologia , Infertilidade Feminina/fisiopatologia , Oócitos/patologia , Ovário/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA