Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(4): e2209831120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669112

RESUMO

We recently reported transposon mutagenesis as a significant driver of spontaneous mutations in the human fungal pathogen Cryptococcus deneoformans during murine infection. Mutations caused by transposable element (TE) insertion into reporter genes were dramatically elevated at high temperatures (37° vs. 30°) in vitro, suggesting that heat stress stimulates TE mobility in the Cryptococcus genome. To explore the genome-wide impact of TE mobilization, we generated transposon accumulation lines by in vitro passage of C. deneoformans strain XL280α for multiple generations at both 30° and at the host-relevant temperature of 37°. Utilizing whole-genome sequencing, we identified native TE copies and mapped multiple de novo TE insertions in these lines. Movements of the T1 DNA transposon occurred at both temperatures with a strong bias for insertion between gene-coding regions. By contrast, the Tcn12 retrotransposon integrated primarily within genes and movement occurred exclusively at 37°. In addition, we observed a dramatic amplification in copy number of the Cnl1 (Cryptococcus neoformans LINE-1) retrotransposon in subtelomeric regions under heat-stress conditions. Comparing TE mutations to other sequence variations detected in passaged lines, the increase in genomic changes at elevated temperatures was primarily due to mobilization of the retroelements Tcn12 and Cnl1. Finally, we found multiple TE movements (T1, Tcn12, and Cnl1) in the genomes of single C. deneoformans isolates recovered from infected mice, providing evidence that mobile elements are likely to facilitate microevolution and rapid adaptation during infection.


Assuntos
Criptococose , Cryptococcus neoformans , Humanos , Animais , Camundongos , Retroelementos/genética , Cryptococcus neoformans/genética , Criptococose/genética , Genoma , Resposta ao Choque Térmico/genética , Elementos de DNA Transponíveis/genética
2.
Proc Natl Acad Sci U S A ; 117(18): 9973-9980, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32303657

RESUMO

When transitioning from the environment, pathogenic microorganisms must adapt rapidly to survive in hostile host conditions. This is especially true for environmental fungi that cause opportunistic infections in immunocompromised patients since these microbes are not well adapted human pathogens. Cryptococcus species are yeastlike fungi that cause lethal infections, especially in HIV-infected patients. Using Cryptococcus deneoformans in a murine model of infection, we examined contributors to drug resistance and demonstrated that transposon mutagenesis drives the development of 5-fluoroorotic acid (5FOA) resistance. Inactivation of target genes URA3 or URA5 primarily reflected the insertion of two transposable elements (TEs): the T1 DNA transposon and the TCN12 retrotransposon. Consistent with in vivo results, increased rates of mutagenesis and resistance to 5FOA and the antifungal drugs rapamycin/FK506 (rap/FK506) and 5-fluorocytosine (5FC) were found when Cryptococcus was incubated at 37° compared to 30° in vitro, a condition that mimics the temperature shift that occurs during the environment-to-host transition. Inactivation of the RNA interference (RNAi) pathway, which suppresses TE movement in many organisms, was not sufficient to elevate TE movement at 30° to the level observed at 37°. We propose that temperature-dependent TE mobilization in Cryptococcus is an important mechanism that enhances microbial adaptation and promotes pathogenesis and drug resistance in the human host.


Assuntos
Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Micoses/genética , Retroelementos/genética , Animais , Antifúngicos/efeitos adversos , Cryptococcus neoformans/patogenicidade , Farmacorresistência Fúngica/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Camundongos , Mutagênese/genética , Micoses/microbiologia , Ácido Orótico/efeitos adversos , Ácido Orótico/análogos & derivados , Ácido Orótico/farmacologia , Sirolimo/farmacologia , Tacrolimo/farmacologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA