Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 111(12): 127401, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24093299

RESUMO

We report a direct measurement of the low-frequency optical conductivity of large-area single-crystal herbertsmithite, a promising spin-liquid candidate material, by means of terahertz time-domain spectroscopy. In the spectral range below 1.4 THz, we observe a contribution to the real part of the in-plane conductivity σ(ab)(ω) from the spin degree of freedom. This spin-induced conductivity exhibits a power-law dependence on frequency σ(ab)(ω) ~ ω(ß) with ß ≈ 1.4. Our observation is consistent with the theoretically predicted low-frequency conductivity arising from an emergent gauge field of a gapless U(1) Dirac spin liquid.

2.
Phys Rev Lett ; 97(8): 087208, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-17026333

RESUMO

The band structure of a prototypical dilute magnetic semiconductor (DMS), Ga1-xMnxAs, is studied across the phase diagram via infrared and optical spectroscopy. We prove that the Fermi energy (EF) resides in a Mn-induced impurity band (IB). Specifically the changes in the frequency dependent optical conductivity [sigma1(omega)] with carrier density are only consistent with EF lying in an IB. Furthermore, the large effective mass (m*) of the carriers inferred from our analysis of sigma1(omega) supports this conclusion. Our findings demonstrate that the metal to insulator transition in this DMS is qualitatively different from other III-V semiconductors doped with nonmagnetic impurities. We also provide insights into the anomalous transport properties of Ga1-xMnxAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA