Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38927741

RESUMO

Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly affecting premature infants, with limited therapeutic options and increased long-term consequences. Adrenomedullin (Adm), a proangiogenic peptide hormone, has been found to protect rodents against experimental BPD. This study aims to elucidate the molecular and cellular mechanisms through which Adm influences BPD pathogenesis using a lipopolysaccharide (LPS)-induced model of experimental BPD in mice. Bulk RNA sequencing of Adm-sufficient (wild-type or Adm+/+) and Adm-haplodeficient (Adm+/-) mice lungs, integrated with single-cell RNA sequencing data, revealed distinct gene expression patterns and cell type alterations associated with Adm deficiency and LPS exposure. Notably, computational integration with cell atlas data revealed that Adm-haplodeficient mouse lungs exhibited gene expression signatures characteristic of increased inflammation, natural killer (NK) cell frequency, and decreased endothelial cell and type II pneumocyte frequency. Furthermore, in silico human BPD patient data analysis supported our cell type frequency finding, highlighting elevated NK cells in BPD infants. These results underscore the protective role of Adm in experimental BPD and emphasize that it is a potential therapeutic target for BPD infants with an inflammatory phenotype.


Assuntos
Adrenomedulina , Displasia Broncopulmonar , Adrenomedulina/genética , Adrenomedulina/metabolismo , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/metabolismo , Animais , Camundongos , Humanos , Análise de Sequência de RNA/métodos , Modelos Animais de Doenças , Lipopolissacarídeos , Pulmão/metabolismo , Pulmão/patologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Transcriptoma
2.
Antioxidants (Basel) ; 13(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38247502

RESUMO

Interrupted lung angiogenesis is a hallmark of bronchopulmonary dysplasia (BPD); however, druggable targets that can rescue this phenotype remain elusive. Thus, our investigation focused on amphiregulin (Areg), a growth factor that mediates cellular proliferation, differentiation, migration, survival, and repair. While Areg promotes lung branching morphogenesis, its effect on endothelial cell (EC) homeostasis in developing lungs is understudied. Therefore, we hypothesized that Areg promotes the proangiogenic ability of the ECs in developing murine lungs exposed to hyperoxia. Lung tissues were harvested from neonatal mice exposed to normoxia or hyperoxia to determine Areg expression. Next, we performed genetic loss-of-function and pharmacological gain-of-function studies in normoxia- and hyperoxia-exposed fetal murine lung ECs. Hyperoxia increased Areg mRNA levels and Areg+ cells in whole lungs. While Areg expression was increased in lung ECs exposed to hyperoxia, the expression of its signaling receptor, epidermal growth factor receptor, was decreased, indicating that hyperoxia reduces Areg signaling in lung ECs. Areg deficiency potentiated hyperoxia-mediated anti-angiogenic effects. In contrast, Areg treatment increased extracellular signal-regulated kinase activation and exerted proangiogenic effects. In conclusion, Areg promotes EC tubule formation in developing murine lungs exposed to hyperoxia.

3.
Antioxidants (Basel) ; 12(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36978868

RESUMO

Inflammation causes bronchopulmonary dysplasia (BPD), a common lung disease of preterm infants. One reason this disease lacks specific therapies is the paucity of information on the mechanisms regulating inflammation in developing lungs. We address this gap by characterizing the lymphatic phenotype in an experimental BPD model because lymphatics are major regulators of immune homeostasis. We hypothesized that hyperoxia (HO), a major risk factor for experimental and human BPD, disrupts lymphatic endothelial homeostasis using neonatal mice and human dermal lymphatic endothelial cells (HDLECs). Exposure to 70% O2 for 24-72 h decreased the expression of prospero homeobox 1 (Prox1) and vascular endothelial growth factor c (Vegf-c) and increased the expression of heme oxygenase 1 and NAD(P)H dehydrogenase [quinone]1 in HDLECs, and reduced their tubule formation ability. Next, we determined Prox1 and Vegf-c mRNA levels on postnatal days (P) 7 and 14 in neonatal murine lungs. The mRNA levels of these genes increased from P7 to P14, and 70% O2 exposure for 14 d (HO) attenuated this physiological increase in pro-lymphatic factors. Further, HO exposure decreased VEGFR3+ and podoplanin+ lymphatic vessel density and lymphatic function in neonatal murine lungs. Collectively, our results validate the hypothesis that HO disrupts lymphatic endothelial homeostasis.

4.
Antioxidants (Basel) ; 11(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740027

RESUMO

Bronchopulmonary dysplasia (BPD) is a morbid lung disease distinguished by lung alveolar and vascular simplification. Hyperoxia, an important BPD causative factor, increases extracellular signal-regulated kinases (ERK)-1/2 expression, whereas decreased lung endothelial cell ERK2 expression reduces angiogenesis and potentiates hyperoxia-mediated BPD in mice. However, ERK1's role in experimental BPD is unclear. Thus, we hypothesized that hyperoxia-induced experimental BPD would be more severe in global ERK1-knockout (ERK1-/-) mice than their wild-type (ERK1+/+ mice) littermates. We determined the extent of lung development, ERK1/2 expression, inflammation, and oxidative stress in ERK1-/- and ERK1+/+ mice exposed to normoxia (FiO2 21%) or hyperoxia (FiO2 70%). We also quantified the extent of angiogenesis and hydrogen peroxide (H2O2) production in hyperoxia-exposed neonatal human pulmonary microvascular endothelial cells (HPMECs) with normal and decreased ERK1 signaling. Compared with ERK1+/+ mice, ERK1-/- mice displayed increased pulmonary ERK2 activation upon hyperoxia exposure. However, the extent of hyperoxia-induced inflammation, oxidative stress, and interrupted lung development was similar in ERK1-/- and ERK1+/+ mice. ERK1 knockdown in HPMECs increased ERK2 activation at baseline, but did not affect in vitro angiogenesis and hyperoxia-induced H2O2 production. Thus, we conclude ERK1 is dispensable for hyperoxia-induced experimental BPD due to compensatory ERK2 activation.

5.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L981-L996, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901520

RESUMO

Bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) is a chronic infantile lung disease that lacks curative therapies. Infants with BPD-associated PH are often exposed to hyperoxia and additional insults such as sepsis that contribute to disease pathogenesis. Animal models that simulate these scenarios are necessary to develop effective therapies; therefore, we investigated whether lipopolysaccharide (LPS) and hyperoxia exposure during saccular lung development cooperatively induce experimental BPD-PH in mice. C57BL/6J mice were exposed to normoxia or 70% O2 (hyperoxia) during postnatal days (PNDs) 1-5 and intraperitoneally injected with varying LPS doses or a vehicle on PNDs 3-5. On PND 14, we performed morphometry, echocardiography, and gene and protein expression studies to determine the effects of hyperoxia and LPS on lung development, vascular remodeling and function, inflammation, oxidative stress, cell proliferation, and apoptosis. LPS and hyperoxia independently and cooperatively affected lung development, inflammation, and apoptosis. Growth rate and antioxidant enzyme expression were predominantly affected by LPS and hyperoxia, respectively, while cell proliferation and vascular remodeling and function were mainly affected by combined exposure to LPS and hyperoxia. Mice treated with lower LPS doses developed adaptive responses and hyperoxia exposure did not worsen their BPD phenotype, whereas those mice treated with higher LPS doses displayed the most severe BPD phenotype when exposed to hyperoxia and were the only group that developed PH. Collectively, our data suggest that an additional insult such as LPS may be necessary for models utilizing short-term exposure to moderate hyperoxia to recapitulate human BPD-PH.


Assuntos
Hiperóxia/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Remodelação Vascular/fisiologia
6.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244398

RESUMO

Bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) is a significant lung morbidity of infants, and disrupted lung angiogenesis is a hallmark of this disease. We observed that extracellular signal-regulated kinases (ERK) 1/2 support angiogenesis in vitro, and hyperoxia activates ERK1/2 in fetal human pulmonary microvascular endothelial cells (HPMECs) and in neonatal murine lungs; however, their role in experimental BPD and PH is unknown. Therefore, we hypothesized that Tie2 Cre-mediated deficiency of ERK2 in the endothelial cells of neonatal murine lungs would potentiate hyperoxia-induced BPD and PH. We initially determined the role of ERK2 in in vitro angiogenesis using fetal HPMECs. To disrupt endothelial ERK2 signaling in the lungs, we decreased ERK2 expression by breeding ERK2flox/flox mice with Tie-Cre mice. One-day-old endothelial ERK2-sufficient (eERK2+/+) or -deficient (eERK2+/-) mice were exposed to normoxia or hyperoxia (FiO2 70%) for 14 d. We then performed lung morphometry, gene and protein expression studies, and echocardiography to determine the extent of inflammation, oxidative stress, and development of lungs and PH. The knockdown of ERK2 in HPMECs decreased in vitro angiogenesis. Hyperoxia increased lung inflammation and oxidative stress, decreased lung angiogenesis and alveolarization, and induced PH in neonatal mice; however, these effects were augmented in the presence of Tie2-Cre mediated endothelial ERK2 deficiency. Therefore, we conclude that endothelial ERK2 signaling is necessary to mitigate hyperoxia-induced experimental BPD and PH in neonatal mice. Our results indicate that endothelial ERK2 is a potential therapeutic target for the management of BPD and PH in infants.


Assuntos
Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Hipertensão Pulmonar/metabolismo , Integrases/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/deficiência , Proteína Quinase 1 Ativada por Mitógeno/genética , Receptor TIE-2/metabolismo , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/patologia , Células Endoteliais/metabolismo , Humanos , Hiperóxia/metabolismo , Hipertensão Pulmonar/patologia , Pulmão/metabolismo , Pulmão/patologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Pneumonia/metabolismo , Transdução de Sinais , Transcriptoma
7.
Am J Pathol ; 190(3): 711-722, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32093901

RESUMO

Bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) is an infantile lung disease characterized by aberrant angiogenesis and impaired resolution of lung injury. Adrenomedullin (AM) signals through calcitonin receptor-like receptor and receptor activity-modifying protein 2 and modulates lung injury initiation. However, its role in lung injury resolution and the mechanisms by which it regulates angiogenesis remain unclear. Consequently, we hypothesized that AM resolves hyperoxia-induced BPD and PH via endothelial nitric oxide synthase (NOS3). AM-sufficient (ADM+/+) or -deficient (ADM+/-) mice were exposed to normoxia or hyperoxia through postnatal days (PNDs) 1 to 14, and the hyperoxia-exposed mice were allowed to recover in normoxia for an additional 56 days. Lung injury and development and PH were quantified at different time points. Human pulmonary microvascular endothelial cells were also used to examine the effects of AM signaling on the NOS3 pathway and angiogenesis. Lung blood vessels and NOS3 expression decreased and the extent of hyperoxia-induced BPD and PH increased in ADM+/- mice compared with ADM+/+ mice. Hyperoxia-induced apoptosis and PH resolved by PND14 and PND70, respectively, in ADM+/+ mice but not in ADM+/- mice. Knockdown of ADM, calcitonin receptor-like receptor, and receptor activity-modifying protein 2 in vitro decreased NOS3 expression, nitric oxide generation, and angiogenesis. Furthermore, NOS3 knockdown abrogated the angiogenic effects of AM. Collectively, these results indicate that AM resolves hyperoxic lung injury via NOS3.


Assuntos
Adrenomedulina/farmacologia , Displasia Broncopulmonar/tratamento farmacológico , Hiperóxia/complicações , Hipertensão Pulmonar/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/fisiopatologia , Células Endoteliais/patologia , Feminino , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Pulmão/fisiopatologia , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/genética , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Transdução de Sinais
8.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L229-L244, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307313

RESUMO

Bronchopulmonary dysplasia (BPD) is a chronic lung disease of infants that is characterized by interrupted lung development. Postnatal sepsis causes BPD, yet the contributory mechanisms are unclear. To address this gap, studies have used lipopolysaccharide (LPS) during the alveolar phase of lung development. However, the lungs of infants who develop BPD are still in the saccular phase of development, and the effects of LPS during this phase are poorly characterized. We hypothesized that chronic LPS exposure during the saccular phase disrupts lung development by mechanisms that promote inflammation and prevent optimal lung development and repair. Wild-type C57BL6J mice were intraperitoneally administered 3, 6, or 10 mg/kg of LPS or a vehicle once daily on postnatal days (PNDs) 3-5. The lungs were collected for proteomic and genomic analyses and flow cytometric detection on PND6. The impact of LPS on lung development, cell proliferation, and apoptosis was determined on PND7. Finally, we determined differences in the LPS effects between the saccular and alveolar lungs. LPS decreased the survival and growth rate and lung development in a dose-dependent manner. These effects were associated with a decreased expression of proteins regulating cell proliferation and differentiation and increased expression of those mediating inflammation. While the lung macrophage population of LPS-treated mice increased, the T-regulatory cell population decreased. Furthermore, LPS-induced inflammatory and apoptotic response and interruption of cell proliferation and alveolarization was greater in alveolar than in saccular lungs. Collectively, the data support our hypothesis and reveal several potential therapeutic targets for sepsis-mediated BPD in infants.


Assuntos
Proliferação de Células/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Alvéolos Pulmonares/crescimento & desenvolvimento , Linfócitos T Reguladores/metabolismo , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Linfócitos T Reguladores/patologia
9.
Biochem Biophys Res Commun ; 503(3): 2009-2014, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30077371

RESUMO

Hyperoxia-induced oxidative stress contributes to the pathogenesis of bronchopulmonary dysplasia (BPD), the most common respiratory morbidity of preterm infants. Importantly, the disease lack specific therapies and is associated with long-term cardio-pulmonary and neurodevelopmental morbidities, signifying the need to discover novel therapies and decrease the disease burden. We and others have demonstrated that leflunomide, a food and drug administration approved drug to treat humans with rheumatoid arthritis, increases the expression of the anti-oxidant enzymes, NAD(P)H quinone dehydrogenase 1 (NQO1), catalase, and superoxide dismutase (SOD). However, whether this drug can decrease oxidative stress in fetal human pulmonary arterial endothelial cells (HPAECs) is unknown. Therefore, we tested the hypothesis that leflunomide will decrease hyperoxia-induced oxidative stress by upregulating these anti-oxidant enzymes in HPAECs. Leflunomide decreased hydrogen peroxide (H2O2) levels and increased the mRNA and protein levels of catalase, NQO1, and SOD2 in HPAECs at basal conditions. Further, leflunomide-treated cells continued to have decreased H2O2 and increased SOD2 levels upon hyperoxia exposure. Leflunomide did not affect the expression of other anti-oxidant enzymes, including hemoxygenase-1 and SOD1. AhR-knockdown experiments suggested that leflunomide regulated NQO1 levels via AhR-dependent mechanisms and H2O2, catalase, and SOD2 levels via AhR-independent mechanisms. Collectively, the results support the hypothesis that leflunomide decreases oxidative stress in HPAECs via SOD2-and catalase-dependent, but AhR- and NQO1-independent mechanisms. Our findings indicate that leflunomide is a potential drug for the management of BPD in preterm infants.


Assuntos
Catalase/metabolismo , Células Endoteliais/efeitos dos fármacos , Feto/citologia , Leflunomida/farmacologia , Pulmão/citologia , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Humanos , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/metabolismo , Relação Estrutura-Atividade
10.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L734-L741, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30047283

RESUMO

Bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infants, is associated with long-term morbidities, including pulmonary hypertension (PH). Importantly, hyperoxia causes BPD and PH; however, the underlying mechanisms remain unclear. Herein, we performed high-throughput transcriptomic and proteomic studies using a clinically relevant murine model of BPD with PH. Neonatal wild-type C57BL6J mice were exposed to 21% oxygen (normoxia) or 70% oxygen (hyperoxia) during postnatal days (PNDs) 1-7. Lung tissues were collected for proteomic and genomic analyses on PND 7, and selected genes and proteins were validated by real-time quantitative PCR and immunoblotting analysis, respectively. Hyperoxia exposure dysregulated the expression of 344 genes and 21 proteins. Interestingly, hyperoxia downregulated genes involved in neuronal development and maturation in lung tissues. Gene set enrichment and gene ontology analyses identified apoptosis, oxidoreductase activity, plasma membrane integrity, organ development, angiogenesis, cell proliferation, and mitophagy as the predominant processes affected by hyperoxia. Furthermore, selected deregulated proteins strongly correlated with the expression of specific genes. Collectively, our results identified several potential therapeutic targets for hyperoxia-mediated BPD and PH in infants.


Assuntos
Biomarcadores/análise , Displasia Broncopulmonar/patologia , Hipertensão Pulmonar/patologia , Pulmão/metabolismo , Proteoma/análise , Transcriptoma , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Int J Mol Sci ; 19(5)2018 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-29783779

RESUMO

Hyperoxia contributes to the pathogenesis of bronchopulmonary dysplasia (BPD), a chronic lung disease of infants that is characterized by interrupted alveologenesis. Disrupted angiogenesis inhibits alveologenesis, but the mechanisms of disrupted angiogenesis in the developing lungs are poorly understood. In pre-clinical BPD models, hyperoxia increases the expression of extracellular signal-regulated kinases (ERK) 1/2; however, its effects on the lung endothelial ERK1/2 signaling are unclear. Further, whether ERK1/2 activation promotes lung angiogenesis in infants is unknown. Hence, we tested the following hypotheses: (1) hyperoxia exposure will increase lung endothelial ERK1/2 signaling in neonatal C57BL/6J (WT) mice and in fetal human pulmonary artery endothelial cells (HPAECs); (2) ERK1/2 inhibition will disrupt angiogenesis in vitro by repressing cell cycle progression. In mice, hyperoxia exposure transiently increased lung endothelial ERK1/2 activation at one week of life, before inhibiting it at two weeks of life. Interestingly, hyperoxia-mediated decrease in ERK1/2 activation in mice was associated with decreased angiogenesis and increased endothelial cell apoptosis. Hyperoxia also transiently activated ERK1/2 in HPAECs. ERK1/2 inhibition disrupted angiogenesis in vitro, and these effects were associated with altered levels of proteins that modulate cell cycle progression. Collectively, these findings support our hypotheses, emphasizing that the ERK1/2 pathway is a potential therapeutic target for BPD infants with decreased lung vascularization.


Assuntos
Hiperóxia/metabolismo , Pulmão/irrigação sanguínea , Sistema de Sinalização das MAP Quinases , Neovascularização Fisiológica , Animais , Apoptose , Ciclo Celular , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Humanos , Hiperóxia/patologia , Pulmão/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo
12.
Int J Biochem Cell Biol ; 94: 119-124, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29223466

RESUMO

Pulmonary hypertension (PH) frequently occurs in infants with bronchopulmonary dysplasia (BPD), causing increased mortality and right ventricular (RV) dysfunction that persists into adulthood. A first step in developing better therapeutic options is identifying and characterizing an appropriate animal model. Previously, we characterized the short-term morbidities of a model in which C57BL/6J wild-type (WT) mice were exposed to 70% O2 (hyperoxia) during the neonatal period. Here, we aimed to determine the long-term morbidities using lung morphometry, echocardiography (Echo), and cardiac magnetic resonance imaging (cMRI). The major highlight of this study is the use of the state-of-the art imaging technique, cMRI, in mice to characterize the long-term cardiac effects of neonatal hyperoxia exposure. To this end, WT mice were exposed to 21% O2 (normoxia) or hyperoxia for two weeks of life, followed by recovery in normoxia for six weeks. Alveolarization, pulmonary vascularization, pulmonary hypertension, and RV function were quantified at eight weeks. We found that hyperoxia exposure resulted in persistent alveolar and pulmonary vascular simplification. Furthermore, the Echo and cMRI studies demonstrated that hyperoxia-exposed mice had signs of PH and RV dysfunction as indicated by increased RV pressure, mass, and end-systolic and -diastolic volumes, and decreased RV stroke volume and ejection fractions. Taken together, our results demonstrate that neonatal hyperoxia exposure in mice cause cardiopulmonary morbidities that persists into adulthood and provides evidence for the use of this model to develop novel therapies for BPD infants with PH.


Assuntos
Modelos Animais de Doenças , Coração/fisiopatologia , Hiperóxia/fisiopatologia , Hipertensão Pulmonar/etiologia , Pulmão/patologia , Circulação Pulmonar , Disfunção Ventricular Direita/etiologia , Animais , Animais Recém-Nascidos , Câmaras de Exposição Atmosférica , Displasia Broncopulmonar/fisiopatologia , Ecocardiografia , Estudos de Viabilidade , Feminino , Coração/diagnóstico por imagem , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/patologia , Pulmão/irrigação sanguínea , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Tamanho do Órgão , Volume Sistólico , Fatores de Tempo , Ultrassonografia Doppler de Pulso , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/patologia
13.
Biochem Biophys Res Commun ; 487(3): 666-671, 2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-28438602

RESUMO

Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD), a chronic lung disease of human infants that is characterized by disrupted lung angiogenesis. Adrenomedullin (AM) is a multifunctional peptide with angiogenic and vasoprotective properties. AM signals via its cognate receptors, calcitonin receptor-like receptor (Calcrl) and receptor activity-modifying protein 2 (RAMP2). Whether hyperoxia affects the pulmonary AM signaling pathway in neonatal mice and whether AM promotes lung angiogenesis in human infants are unknown. Therefore, we tested the following hypotheses: (1) hyperoxia exposure will disrupt AM signaling during the lung development period in neonatal mice; and (2) AM will promote angiogenesis in fetal human pulmonary artery endothelial cells (HPAECs) via extracellular signal-regulated kinases (ERK) 1/2 activation. We initially determined AM, Calcrl, and RAMP2 mRNA levels in mouse lungs on postnatal days (PND) 3, 7, 14, and 28. Next we determined the mRNA expression of these genes in neonatal mice exposed to hyperoxia (70% O2) for up to 14 d. Finally, using HPAECs, we evaluated if AM activates ERK1/2 and promotes tubule formation and cell migration. Lung AM, Calcrl, and RAMP2 mRNA expression increased from PND 3 and peaked at PND 14, a time period during which lung development occurs in mice. Interestingly, hyperoxia exposure blunted this peak expression in neonatal mice. In HPAECs, AM activated ERK1/2 and promoted tubule formation and cell migration. These findings support our hypotheses, emphasizing that AM signaling axis is a potential therapeutic target for human infants with BPD.


Assuntos
Adrenomedulina/metabolismo , Hiperóxia/metabolismo , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Receptores de Adrenomedulina/metabolismo , Transdução de Sinais , Animais , Animais Recém-Nascidos , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Camundongos
14.
Biochem Biophys Res Commun ; 485(1): 195-200, 2017 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-28192119

RESUMO

Aryl hydrocarbon receptor (AhR) has been increasingly recognized to play a crucial role in normal physiological homeostasis. Additionally, disrupted AhR signaling leads to several pathological states in the lung and liver. AhR activation transcriptionally induces detoxifying enzymes such as cytochrome P450 (CYP) 1A and NAD(P)H quinone dehydrogenase 1 (NQO1). The toxicity profiles of the classical AhR ligands such as 3-methylcholanthrene and dioxins limit their use as a therapeutic agent in humans. Hence, there is a need to identify nontoxic AhR ligands to develop AhR as a clinically relevant druggable target. Recently, we demonstrated that leflunomide, a FDA approved drug, used to treat rheumatoid arthritis in humans, induces CYP1A enzymes in adult mice via the AhR. However, the mechanisms by which this drug induces NQO1 in vivo are unknown. Therefore, we tested the hypothesis that leflunomide will induce pulmonary and hepatic NQO1 enzyme in neonatal mice via AhR-dependent mechanism(s). Leflunomide elicited significant induction of pulmonary CYP1A1 and NQO1 expression in neonatal mice. Interestingly, the dose at which leflunomide increased NQO1 was significantly higher than that required to induce CYP1A1 enzyme. Likewise, it also enhanced hepatic CYP1A1, 1A2 and NQO1 expression in WT mice. In contrast, leflunomide failed to induce these enzymes in AhR-null mice. Our results indicate that leflunomide induces pulmonary and hepatic CYP1A and NQO1 enzymes via the AhR in neonatal mice. These findings have important implications to prevent and/or treat disorders such as bronchopulmonary dysplasia in human infants where AhR may play a crucial role in the disease pathogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Citocromo P-450 CYP1A1/genética , Fatores Imunológicos/farmacologia , Isoxazóis/farmacologia , NAD(P)H Desidrogenase (Quinona)/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Deleção de Genes , Leflunomida , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico/genética
15.
Toxicol Appl Pharmacol ; 311: 26-33, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27725188

RESUMO

Omeprazole (OM) is an aryl hydrocarbon receptor (AhR) agonist and a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Recently, we showed that OM induces NAD (P) H quinone oxidoreductase-1 (NQO1) via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent mechanism. Heme oxygenase-1 (HO-1) is another cytoprotective and antioxidant enzyme that is regulated by Nrf2. Whether OM induces HO-1 in fetal human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce HO-1 expression via Nrf2 in HPMEC. OM induced HO-1 mRNA and protein expression in a dose-dependent manner. siRNA-mediated knockdown of AhR failed to abrogate, whereas knockdown of Nrf2 abrogated HO-1 induction by OM. To identify the underlying molecular mechanisms, we determined the effects of OM on cellular hydrogen peroxide (H2O2) levels since oxidative stress mediated by the latter is known to activate Nrf2. Interestingly, the concentration at which OM induced HO-1 also increased H2O2 levels. Furthermore, H2O2 independently augmented HO-1 expression. Although N-acetyl cysteine (NAC) significantly decreased H2O2 levels in OM-treated cells, we observed that OM further increased HO-1 mRNA and protein expression in NAC-pretreated compared to vehicle-pretreated cells, suggesting that OM induces HO-1 via H2O2-independent mechanisms. In conclusion, we provide evidence that OM transcriptionally induces HO-1 via AhR - and H2O2 - independent, but Nrf2 - dependent mechanisms. These results have important implications for human disorders where Nrf2 and HO-1 play a beneficial role.


Assuntos
Heme Oxigenase-1/biossíntese , Peróxido de Hidrogênio/farmacologia , Pulmão/embriologia , Microvasos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Omeprazol/farmacologia , Transdução de Sinais , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Humanos , Peróxido de Hidrogênio/metabolismo , Pulmão/irrigação sanguínea , Microvasos/enzimologia
16.
Int J Chron Obstruct Pulmon Dis ; 11: 1597-605, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27478373

RESUMO

Bronchopulmonary dysplasia (BPD) and chronic obstructive pulmonary disease (COPD) are chronic lung diseases of human infants and adults, respectively, that are characterized by alveolar simplification. One-third of the infants with severe BPD develop pulmonary hypertension (PH). More importantly, PH increases morbidity and mortality in BPD patients. Additionally, COPD is a common respiratory morbidity in former BPD patients. The lack of an appropriate small animal model wherein echocardiography (Echo) can demonstrate PH is one of the major barriers to understand the molecular mechanisms of the disease and, thereby, develop rational therapies to prevent and/or treat PH in BPD patients. Thus, the goal of this study was to establish a model of experimental BPD and PH and investigate the feasibility of Echo to diagnose PH in neonatal mice. Since hyperoxia-induced oxidative stress and inflammation contributes to the development of BPD with PH, we tested the hypothesis that exposure of newborn C57BL/6J mice to 70% O2 (hyperoxia) for 14 days leads to lung oxidative stress, inflammation, alveolar and pulmonary vascular simplification, pulmonary vascular remodeling, and Echo evidence of PH. Hyperoxia exposure caused lung oxidative stress and inflammation as evident by increased malondialdehyde adducts and inducible nitric oxide synthase, respectively. Additionally, hyperoxia exposure caused growth restriction, alveolar and pulmonary vascular simplification, and pulmonary vascular remodeling. At 14 days of age, Echo of these mice demonstrated that hyperoxia exposure decreased pulmonary acceleration time (PAT) and PAT/ejection time ratio and increased right ventricular free wall thickness, which are indicators of significant PH. Thus, we have demonstrated the feasibility of Echo to phenotype PH in neonatal mice with experimental BPD with PH, which can aid in discovery of therapies to prevent and/or treat BPD with PH and its sequelae such as COPD in humans.


Assuntos
Displasia Broncopulmonar/etiologia , Ecocardiografia Doppler de Pulso , Hiperóxia/complicações , Hipertensão Pulmonar/diagnóstico por imagem , Pulmão/irrigação sanguínea , Artéria Pulmonar/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/prevenção & controle , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/diagnóstico , Displasia Broncopulmonar/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Estudos de Viabilidade , Feminino , Hemodinâmica , Hiperóxia/metabolismo , Hiperóxia/fisiopatologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo , Valor Preditivo dos Testes , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fatores de Tempo , Remodelação Vascular , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA