Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Methods ; 17(1): 95, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530876

RESUMO

BACKGROUND: Being able to accurately assess the 3D architecture of plant canopies can allow us to better estimate plant productivity and improve our understanding of underlying plant processes. This is especially true if we can monitor these traits across plant development. Photogrammetry techniques, such as structure from motion, have been shown to provide accurate 3D reconstructions of monocot crop species such as wheat and rice, yet there has been little success reconstructing crop species with smaller leaves and more complex branching architectures, such as chickpea. RESULTS: In this work, we developed a low-cost 3D scanner and used an open-source data processing pipeline to assess the 3D structure of individual chickpea plants. The imaging system we developed consists of a user programmable turntable and three cameras that automatically captures 120 images of each plant and offloads these to a computer for processing. The capture process takes 5-10 min for each plant and the majority of the reconstruction process on a Windows PC is automated. Plant height and total plant surface area were validated against "ground truth" measurements, producing R2 > 0.99 and a mean absolute percentage error < 10%. We demonstrate the ability to assess several important architectural traits, including canopy volume and projected area, and estimate relative growth rate in commercial chickpea cultivars and lines from local and international breeding collections. Detailed analysis of individual reconstructions also allowed us to investigate partitioning of plant surface area, and by proxy plant biomass. CONCLUSIONS: Our results show that it is possible to use low-cost photogrammetry techniques to accurately reconstruct individual chickpea plants, a crop with a complex architecture consisting of many small leaves and a highly branching structure. We hope that our use of open-source software and low-cost hardware will encourage others to use this promising technique for more architecturally complex species.

2.
Plant Cell Environ ; 44(2): 432-444, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33175397

RESUMO

H2 18 O enrichment develops when leaves transpire, but an accurate generalized mechanistic model has proven elusive. We hypothesized that leaf hydraulic architecture may affect the degree to which gradients in H2 18 O develop within leaves, influencing bulk leaf stable oxygen isotope enrichment (ΔL ) and the degree to which the Péclet effect is relevant in leaves. Leaf hydraulic design predicted the relevance of a Péclet effect to ΔL in 19 of the 21 species tested. Leaves with well-developed hydraulic connections between the vascular tissue and the epidermal cells through bundle sheath extensions and clear distinctions between palisade and spongy mesophyll layers (while the mesophyll is hydraulically disconnected) may have velocities of the transpiration stream such that gradients in H2 18 O develop and are expressed in the mesophyll. In contrast, in leaves where the vascular tissue is hydraulically disconnected from the epidermal layers, or where all mesophyll cells are well connected to the transpiration stream, velocities within the liquid transport pathways may be low enough that gradients in H2 18 O are very small. Prior knowledge of leaf hydraulic design allows informed selection of the appropriate ΔL modelling framework.


Assuntos
Oxigênio/metabolismo , Fenômenos Fisiológicos Vegetais , Transpiração Vegetal/fisiologia , Plantas/anatomia & histologia , Transporte Biológico , Células do Mesofilo/metabolismo , Modelos Biológicos , Isótopos de Oxigênio/análise , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Plântula/anatomia & histologia , Plântula/fisiologia , Água/fisiologia
3.
Photosynth Res ; 141(1): 65-82, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30771063

RESUMO

The temperature response of mesophyll conductance to CO2 diffusion (gm) has been shown to vary considerably between species but remains poorly understood. Here, we tested the hypothesis that increases in chloroplast surface area with increasing temperature, due to the formation of chloroplast protrusions, caused observed positive responses of gm to temperature. We found no evidence of chloroplast protrusions. Using simultaneous measurements of carbon and oxygen isotope discrimination during photosynthesis to separate total gm (gm13) into cell wall and plasma membrane conductance (gm18) and chloroplast membrane conductance (gcm) components, we explored the temperature response in genotypes of soybean and barley, and sunflower plants grown at differing CO2 concentrations. Differences in the temperature sensitivity of gm18 were found between genotypes and between plants grown at differing CO2 concentration but did not relate to measured anatomical features such as chloroplast surface area or cell wall thickness. The closest fit of modelled gm13 to estimated values was found when cell wall thickness was allowed to decline at higher temperatures and transpiration rates, but it remains to be tested if this decline is realistic. The temperature response of gcm (calculated from the difference between 1/gm13 and 1/gm18) varied between barley genotypes, and was best fitted by an optimal response in sunflower. Taken together, these results indicate that gm is a highly complex trait with unpredictable sensitivity to temperature that varies between species, between genotypes within a single species, with growth environment, between replicate leaves, and even with age for an individual leaf.


Assuntos
Células do Mesofilo/fisiologia , Plantas/genética , Plantas/metabolismo , Temperatura , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Genótipo , Modelos Biológicos , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Especificidade da Espécie
4.
AoB Plants ; 11(1): ply073, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30680087

RESUMO

. Mesophyll conductance (g m) has been shown to vary between genotypes of a number of species and with growth environments, including nitrogen availability, but understanding of g m variability in legumes is limited. We might expect g m in legumes to respond differently to limited nitrogen availability, due to their ability to fix atmospheric N2. Using online stable carbon isotope discrimination method, we quantified genetic variability in g m under ideal conditions, investigated g m response to N source (N2-fixation or inorganic N) and determined the effects of N source and water availability on the rapid response of g m to photosynthetic photon flux density (PPFD) and radiation wavelength in three genotypes of chickpea (Cicer arietinum). Genotypes varied 2-fold in g m under non-limiting environments. N-fed plants had higher g m than N2-fixing plants in one genotype, while g m in the other two genotypes was unaffected. g m response to PPFD was altered by N source in one of three genotypes, in which the g m response to PPFD was statistically significant in N-fed plants but not in N2-fixing plants. There was no clear effect of moderate water stress on the g m response to PPFD and radiation wavelength. Genotypes of a single legume species differ in the sensitivity of g m to both long- and short-term environmental conditions, precluding utility in crop breeding programmes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA