RESUMO
The EGFR and TGFß signaling pathways are important mediators of tumorigenesis, and cross-talk between them contributes to cancer progression and drug resistance. Therapies capable of simultaneously targeting EGFR and TGFß could help improve patient outcomes across various cancer types. Here, we developed BCA101, an anti-EGFR IgG1 mAb linked to an extracellular domain of human TGFßRII. The TGFß "trap" fused to the light chain in BCA101 did not sterically interfere with its ability to bind EGFR, inhibit cell proliferation, or mediate antibody-dependent cellular cytotoxicity. Functional neutralization of TGFß by BCA101 was demonstrated by several in vitro assays. BCA101 increased production of proinflammatory cytokines and key markers associated with T-cell and natural killer-cell activation, while suppressing VEGF secretion. In addition, BCA101 inhibited differentiation of naïve CD4+ T cells to inducible regulatory T cells (iTreg) more strongly than the anti-EGFR antibody cetuximab. BCA101 localized to tumor tissues in xenograft mouse models with comparable kinetics to cetuximab, both having better tumor tissue retention over TGFß "trap." TGFß in tumors was neutralized by approximately 90% in animals dosed with 10 mg/kg of BCA101 compared with 54% in animals dosed with equimolar TGFßRII-Fc. In patient-derived xenograft mouse models of head and neck squamous cell carcinoma, BCA101 showed durable response after dose cessation. The combination of BCA101 and anti-PD1 antibody improved tumor inhibition in both B16-hEGFR-expressing syngeneic mouse models and in humanized HuNOG-EXL mice bearing human PC-3 xenografts. Together, these results support the clinical development of BCA101 as a monotherapy and in combination with immune checkpoint therapy. SIGNIFICANCE: The bifunctional mAb fusion design of BCA101 targets it to the tumor microenvironment where it inhibits EGFR and neutralizes TGFß to induce immune activation and to suppress tumor growth.
Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias , Animais , Humanos , Camundongos , Anticorpos Monoclonais Humanizados/uso terapêutico , Carcinoma de Células Escamosas/terapia , Linhagem Celular Tumoral , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/terapia , Fator de Crescimento Transformador beta , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/terapiaRESUMO
Livestock, having close resemblance to humans, could be a better source of primary hepatocytes than rodents. Herein, we successfully developed three-dimensional (3D) culturing system for primary sheep and buffalo hepatocytes. The 3D-structures of sheep hepatocytes were formed on the fifth-day and maintained until the tenth-day on polyHEMA-coated plates and in hanging drops with William's E media (HDW). Between the cultured and fresh cells, we observed a similar expression of GAPDH, HNF4α, ALB, CYP1A1, CK8 and CK18. Interestingly, a statistically significant increase was noted in the TAT, CPS, AFP, AAT, GSP and PCNA expression. In buffalo hepatocytes culture, 3D-like structures were formed on the third-day and maintained until the sixth-day on polyHEMA and HDW. The expression of HNF4α, GSP, CPS, AFP, AAT, PCNA and CK18 was similar between cultured and fresh cells. Further, a statistically significant increase in the TAT and CK8 expression, and a decrease in the GAPDH, CYP1A1 and ALB expression were noted. Among the culture systems, HDW maintained the liver transcript markers more or less similar to the fresh hepatocytes of the sheep and buffalo for ten and six days, respectively. Taken together, hanging drop is an efficient method for 3D culturing of primary sheep and buffalo hepatocytes.