Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Int J Pharm ; 664: 124584, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142465

RESUMO

Arbutin, a typical optical isomer, has garnered widespread acclaim in the whitening cosmetics for its favorable efficacy and safety. However, the molecular mechanisms underlying α-arbutin and ß-arbutin permeating across the skin have not elucidated clearly yet. Herein we aimed to unveil how α-arbutin and ß-arbutin interacted with keratin or SC lipids, further demonstrating their relationship with their drug permeability. We found that α-arbutin displayed significantly higher drug accumulation into the porcine skin than ß-arbutin within 24 h through in vitro permeation test. Moreover, α-arbutin predominantly induced the alternations of secondary structure of amide II during the drug permeation, which was favorable for α-arbutin permeation. On the contrary, ß-arbutin exhibited an observable effect on the stretching vibration of SC lipids, possessing a significantly stronger mixing energy, binding energy and compatibility with ceramide (Cer) than that of α-arbutin, which ultimately restricted its permeation. Interestingly, free fatty acids and ceramides of the SC lipids specifically utilized its oxygen atom of carboxyl group to dock the arbutin molecules, enhancing their affinity with ß-arbutin, as confirmed by molecular simulation and 13Carbon Nuclear Magnetic Resonance. Nevertheless, a favorable compatibility between α-arbutin and keratin was observed. It was emphasized that the distinct spatial configuration and opposite optical rotation of arbutin was the leading factor impacting the intermolecular force between arbutin and the SC, and resulted in a diverse drug permeation. In cellular and in vivo skin pharmacokinetic studies, α-arbutin also possessed a higher cellular uptake and topical bioavailability than ß-arbutin. This study revealed the transdermal permeation mechanisms of optical isomer arbutin at the molecular levels, providing methodological reference for the investigations of permeation behaviors of other isomers with similar spatial configuration.

2.
Cancer Sci ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105355

RESUMO

High expression of truncated O-glycans Tn antigen predicts adverse clinical outcome in patients with clear cell renal cell carcinoma (ccRCC). To understand the biosynthetic underpinnings of Tn antigen changes in ccRCC, we focused on N-acetylgalactosaminyltransferases (GALNTs, also known as GalNAcTs) known to be involved in Tn antigen synthesis. Data from GSE15641 profile and local cohort showed that GALNT6 was significantly upregulated in ccRCC tissues. The current study aimed to determine the role of GALNT6 in ccRCC, and whether GALNT6-mediated O-glycosylation aggravates malignant behaviors. Gain- and loss-of-function experiments showed that overexpression of GALNT6 accelerated ccRCC cell proliferation, migration, and invasion, as well as promoted ccRCC-derived xenograft tumor growth and lung metastasis. In line with this, silencing of GALNT6 yielded the opposite results. Mechanically, high expression of GALNT6 led to the accumulation of Tn antigen in ccRCC cells. By undertaking immunoprecipitation coupled with liquid chromatography/mass spectrometry, vicia villosa agglutinin blot, and site-directed mutagenesis assays, we found that O-glycosylation of prohibitin 2 (PHB2) at Ser161 was required for the GALNT6-induced ccRCC cell proliferation, migration, and invasion. Additionally, we identified lens epithelium-derived growth factor (LEDGF) as a key regulator of GALNT6 transcriptional induction in ccRCC growth and an upstream contributor to ccRCC aggressive behavior. Collectively, our findings indicate that GALNT6-mediated abnormal O-glycosylation promotes ccRCC progression, which provides a potential therapeutic target in ccRCC development.

3.
Int J Pharm ; 663: 124557, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39103061

RESUMO

Acetyl tripeptide-30 citrulline, a commercialized bio-active peptide, is widely used in anti-wrinkle formulations. Volunteer-based tests have demonstrated that topical application of products containing acetyl tripeptide-30 citrulline significantly reduces the visibility of stretch marks. However, there is still a lack of research dedicated to systematically and holistically evaluating its cosmetic properties and elucidating its mechanisms of action. In this study, we assessed the cosmetic potential of acetyl tripeptide-30 citrulline using human immortalized keratinocytes (HaCaT) and mouse embryonic fibroblasts (3T3). Our findings reveal that acetyl tripeptide-30 citrulline exhibits anti-inflammatory and antioxidant activities in skin cells, particularly effective against the inflammatory markers cyclooxygenase-2 (COX2), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6), and the extent of inhibition of reactive oxygen species (ROS) production ranged from 95 % to 340 %. Moreover, acetyl tripeptide-30 citrulline specifically up-regulates Collagen IV and down-regulates matrix metalloproteinase-9 (MMP9), enhances the expression of skin barrier proteins transglutaminase 1 (TGM1) and filaggrin (FLG), thereby demonstrating its reparative capabilities. Additionally, acetyl tripeptide-30 citrulline increases the expression of the water channel protein aquaporin 3 (AQP3), thus improving skin hydration function. These results substantiate the previously proclaimed cosmetic attributes of acetyl tripeptide-30 citrulline and support its efficacy as an anti-aging agent in dermatological applications.

4.
Int J Gen Med ; 17: 3119-3127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39049836

RESUMO

Objective: This study aimed to assess the effectiveness of an electronic cannulation atlas in preventing and treating complications of arteriovenous fistula. Methods: The observation group, consisting of 92 dialysis patients from July to December 2021, was managed with an electronic cannulation atlas. After 6 months, the incidence of complications such as stenosis, hematoma, thrombus, aneurysm, and cannulation failure was compared between the groups. Nurse satisfaction with the electronic cannulation atlas system was also assessed through a questionnaire. Results: The observation group had lower incidence rates of arteriovenous fistula stenosis, thrombus, aneurysm, and failure rate of cannulation compared to the control group, with statistically significant differences (p<0.05). The incidence rates of hematoa were similar in both groups, showing no significant difference (p>0.05). After 3 months of management, the incidence of arteriovenous fistula complications in the observation group was significantly lower than in the control group (p<0.05). Additionally, utilizing the electronic cannulation atlas system was found to increase nurses' job satisfaction. Conclusion: The use of electronic cannulation atlas for the treatment of patients' arteriovenous fistula could effectively reduce the incidence of complications of patients' arteriovenous fistula, reduce the failure rate of cannulation, reduce the workload of nurses, and improve the job satisfaction of nurses.

5.
J Org Chem ; 89(15): 10614-10623, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39051432

RESUMO

A photocatalyst-free and EDA complex-enabled radical cascade cyclization reaction of inactive alkenes with bromodifluoroacetamides was reported for the divergent synthesis of fluorine-containing tetralones and quinazolinones. In this transformation, persulfates as electron donors and difluoro bromamide as electron acceptors generate the EDA complex. This is a promising photochemical method with advantages such as mild reaction conditions, simple operation, being metal-free, and excellent functional group tolerance.

6.
New Phytol ; 243(6): 2265-2278, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39056285

RESUMO

Kiwifruit ripening is a complex and highly coordinated process that occurs in conjunction with the formation of fruit edible quality. The significance of epigenetic changes, particularly the impact of N6-methyladenosine (m6A) RNA modification on fruit ripening and quality formation, has been largely overlooked. We monitored m6A levels and gene expression changes in kiwifruit at four different stages using LC-MS/MS, MeRIP, RNA-seq, and validated the function of AcALKBH10 through heterologous transgenic expression in tomato. Notable m6A modifications occurred predominantly at the stop codons and the 3' UTRs and exhibited a gradual reduction in m6A levels during the fruit ripening process. Moreover, these m6A modifications in the aforementioned sites demonstrated a discernible inverse relationship with the levels of mRNA abundance throughout the ripening process, suggesting a repression effect of m6A modification in the modulation of kiwifruit ripening. We further demonstrated that AcALKBH10 rather than AcECT9 predominantly regulates m6A levels in ripening-related genes, thereby exerting the regulatory control over the ripening process and the accumulation of soluble sugars and organic acids, ultimately influencing fruit ripening and quality formation. In conclusion, our findings illuminate the epi-regulatory mechanism involving m6A in kiwifruit ripening, offering a fresh perspective for cultivating high-quality kiwifruit with enhanced nutritional attributes.


Assuntos
Actinidia , Adenosina , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , RNA Mensageiro , Actinidia/genética , Actinidia/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Genes de Plantas
7.
World J Clin Oncol ; 15(7): 799-805, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39071460

RESUMO

Colorectal cancer (CRC) has high incidence and mortality rates, and the emergence and application of CRC screening have helped us effectively control the occurrence and development of CRC. Currently, common international screening methods include tests based on feces and blood, and examination methods that allow for visualization, such as sigmoidoscopy and colonoscopy. Some methods have been widely used, whereas others such as multi-target stool RNA test are still being explored and developed, and are expected to become front-line screening methods for CRC in the future. The choice of screening method is affected by external conditions and the patients' situation, and the clinician must choose an appropriate strategy according to the actual situation and the patient's wishes. This article introduces various CRC screening methods and analyzes the factors relevant to the screening strategy.

8.
Front Oncol ; 14: 1364397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966067

RESUMO

Background and aim: This study aims to analyze the worldwide prevalence, mortality rates, and disability-adjusted life years (DALYs) attributed to breast cancer in women between 1990 and 2019. Additionally, it seeks to forecast the future trends of these indicators related to the burden of breast cancer in women from 2020 to 2030. Methods: Data from the Global Burden of Disease Study (GBD) 2019 was analyzed to determine the age-standardized incidence rate (ASIR) and age-standardized death rate (ASDR) of DALYs due to breast cancer in women across 204 countries and territories from 1990 to 2019. Socio-economic development levels of countries and regions were assessed using Socio-demographic Indexes, and trends in the burden of breast cancer in women worldwide from 2020 to 2030 were projected using generalized additive models (GAMs). Results: The estimated annual percentage change (EAPC) in the ASIR breast cancer in women globally was 0.36 from 1990 to 2019 and is expected to increase to 0.44 from 2020 to 2030. In 2019, the ASIR of breast cancer in women worldwide was 45.86 and is projected to reach 48.09 by 2030. The burden of breast cancer in women generally rises with age, with the highest burden expected in the 45-49 age group from 2020 to 2030. The fastest increase in burden is anticipated in Central sub-Saharan Africa (EAPC in the age-standardized death rate: 1.62, EAPC in the age-standardized DALY rate: 1.52), with the Solomon Islands (EAPC in the ASIR: 7.25) and China (EAPC in the ASIR: 2.83) projected to experience significant increases. Furthermore, a strong positive correlation was found between the ASIR breast cancer in women globally in 1990 and the projected rates for 2030 (r = 0.62). Conclusion: The anticipated increase in the ASIR of breast cancer in women globally by 2030 highlights the importance of focusing on women aged 45-49 in Central sub-Saharan Africa, Oceania, the Solomon Islands, and China. Initiatives such as breast cancer information registries, raising awareness of risk factors and incidence, and implementing universal screening programs and diagnostic tests are essential in reducing the burden of breast cancer and its associated morbidity and mortality.

9.
J Cosmet Dermatol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952060

RESUMO

BACKGROUND: Retinoids, defined as synthetic or natural derivatives of vitamin A, have been extensively studied as anti-aging molecules that are widely applied in cosmetics. However, due to their physicochemical property, retinoids are highly unstable and extremely sensitive to light, oxygen, and temperature. Moreover, topical application of retinoids often leads to cutaneous irritation. These instabilities and irritant properties of retinoids limit their application in cosmetic and pharmaceutical products. AIM: Our study aimed to provide a systematic review to summarize the mechanisms underlying the instability and irritant properties of retinoids, as well as recent developments in addressing these challenges. METHODS: A comprehensive PubMed search was conducted using the following keywords: retinoids, chemical instability, skin irritation, retinoid derivatives, nano lipid-based carriers, liposomes, penetration-enhancer vesicles, ethosomes, niosomes, nanoemulsions, solid lipid nanoparticles, vitamins, soothing and hydrating agents, antioxidants and metal chelator and retinol combinations. Relevant researches published between 1968 and 2023 and studies related to these reports were reviewed. RESULTS: The development of new retinoid derivatives, the utilization of new delivery systems like nano lipid-based carriers and the combination with other compounds like vitamins, soothing agents, antioxidants and metal chelator have been explored to improve the stability, bioavailability, and toxicity of the retinoid family. CONCLUSIONS: Through advancements in formulation techniques, structure modification of retinoid derivatives and development of novel nano lipid-based carriers, the chemical instability and skin irritation of retinoids has been mitigated, ensuring their efficacy and potency over extended periods.

10.
Int Immunopharmacol ; 139: 112657, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39024749

RESUMO

Long-term exposure to ultraviolet radiation may cause photoaging of skin tissues. Coreopsis tinctoria Nutt. riches a variety of flavonoids with strong antioxidant activities. In the present study, the main antioxidant flavonoid was isolated from C. tinctoria and identified as okanin by Mass spectrum and Nuclear Magnetic Resonance Spectroscopy. Okanin was found to effectively reduce the malondialdehyde content, increase various intracellular antioxidant enzyme activities, relieve epidermal hyperplasia and dermal damage caused by UVB irradiation, and increase the collagen fibers' content in the dorsal skin tissue of mice. Immunohistochemical analysis showed that okanin effectively counteracted the photoaging effect of UVB-induced by down-regulating IL-1, IL-6, TNF-α, and COX-2, and up-regulating COL-1, COL-3, and HYP expression. In addition, okanin can inhibit skin photoaging by regulating TNF-ß/Smad2-3, MAPK, P13K/AKT, and NF-κB signaling pathways. In particular, the three key markers of photoaging, MMP (MMP-1/-3/-9), were down-regulated and five collagen synthesis genes (COL1A1, COL3A1, COL5A2, COL6A1, and COL7A1) were up-regulated, underlines the direct anti-photoaging mechanism of okanin in preventing collagen degradation and promoting collagen synthesis. The current investigation provides new insights into the great potential of okanin in alleviating skin photoaging and lays theoretical references for the development ofanti-photoaging products.


Assuntos
Coreopsis , Envelhecimento da Pele , Pele , Raios Ultravioleta , Animais , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Camundongos , Pele/efeitos dos fármacos , Pele/patologia , Pele/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Citocinas/metabolismo , Humanos , Colágeno/metabolismo , Feminino , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Metaloproteinases da Matriz/metabolismo , Metaloproteinases da Matriz/genética
11.
Front Public Health ; 12: 1398303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903592

RESUMO

Objective: This study assesses the worldwide impact of ischemic stroke caused by ambient particulate matter pollution between 1990 and 2019, utilizing data from the Global Burden of Disease (GBD) 2019. Methods: An analysis was conducted across various subgroups, including region, Socio-demographic Index (SDI) level, country, age, and gender. The study primarily examined metrics such as death cases, death rate, Disability-Adjusted Life Years (DALYs), DALY rate, and age-standardized indicators. The Estimated Annual Percentage Change (EAPC) was calculated to assess trends over time. Results: The study found a moderate increase in the global burden of ischemic stroke attributed to ambient particulate matter, with the age-standardized DALY rate showing an EAPC of 0.41. Subgroup analyses indicated the most substantial increases in Western Sub-Saharan Africa (EAPC 2.64), East Asia (EAPC 2.77), and Eastern Sub-Saharan Africa (EAPC 3.80). Low and middle SDI countries displayed the most notable upward trends, with EAPC values of 3.36 and 3.58 for age-standardized death rate (ASDR) and DALY rate, respectively. Specifically, countries like Equatorial Guinea, Timor-Leste, and Yemen experienced the largest increases in ASDR and age-standardized DALY rate. Furthermore, both death and DALY rates from ischemic stroke due to particulate matter showed significant increases with age across all regions. Conclusion: The study highlights the increasing worldwide health consequences of ischemic stroke linked to particulate matter pollution, particularly in Asia and Africa. This emphasizes the critical necessity for tailored public health interventions in these regions.


Assuntos
Saúde Global , AVC Isquêmico , Material Particulado , Humanos , Material Particulado/efeitos adversos , Masculino , Feminino , AVC Isquêmico/mortalidade , AVC Isquêmico/epidemiologia , Pessoa de Meia-Idade , Idoso , Carga Global da Doença , Adulto , Poluição do Ar/efeitos adversos , Idoso de 80 Anos ou mais , Anos de Vida Ajustados por Deficiência
12.
Discov Med ; 36(184): 923-935, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38798252

RESUMO

BACKGROUND: SGI-1027 is a recognized inhibitor of DNA methyltransferase 1 (DNMT1), and earlier investigations have indicated an inverse correlation between dysregulated DNMT1 expression in gastric cancer (GC) and retinoblastoma 1 (RB1) gene expression. Despite this knowledge, the precise mechanisms underlying the action of SGI-1027 in GC cells remain inadequately comprehended. The primary objective of this study is to elucidate the impact of SGI-1027 on the behavior of GC cells, encompassing aspects such as growth and metastatic potential, by intervening in DNMT1, thereby influencing the regulation of RB1 gene expression. METHOD: The acquisition of the normal gastric mucosal cell line GES-1 and the human gastric cancer cell line MKN45 was followed by employing Western blot (WB) and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) techniques to evaluate the expression levels of RB1 and DNMT1 in these two cell lines. Subsequently, the MKN45 cell line was cultured in medium containing varying concentrations of SGI-1027, and the impact of SGI-1027 on the regulation of RB1 and DNMT1 in GC cells was reassessed using WB and qRT-PCR techniques. To scrutinize the effect of SGI-1027 on GC cells, we utilized the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT) assay to determine cell proliferation and performed Transwell experiments to assess cell migration and invasion capabilities. Throughout this process, we also employed WB to assess the levels of cell cycle-associated proteins (Cyclin D1, Cyclin E1, and Cyclin B1) and proteins related to apoptosis (BCL-2 associated protein X apoptosis regulator (BAX) and B-cell lymphoma 2 apoptosis regulator (BCL-2)). Furthermore, we injected the MKN45 cell line and MKN45 cell line cultured with the optimal concentration of SGI-1027 for 5 days and 10 days into mice subcutaneously and through the tail vein, dividing them into the Model group, Model+SGI-1027 5d group, and Model+SGI-1027 10d group. We monitored changes in tumor size and volume in mice, and tumor tissues as well as lung tissues were collected for hematoxylin and eosin (HE) staining. Finally, DNMT1 expression levels in GC tissues were detected using both WB and immunohistochemistry (IHC) techniques. Additionally, RB1 expression levels in GC tissues were assessed using WB. RESULT: In contrast to GES-1 cells, MKN45 cells displayed a distinctive profile characterized by increased DNMT1 expression and decreased RB1 expression (p < 0.05). However, upon the introduction of SGI-1027, a notable decrease in DNMT1 levels within GC cells was observed, concomitant with an elevation in RB1 gene expression, with 25 µmol/L SGI-1027 identified as the optimal concentration (p < 0.05). Functional assays demonstrated that SGI-1027-treated GC cells exhibited pronounced features of inhibited proliferation, migration, and invasion when compared to untreated MKN45 cells (p < 0.05). Moreover, in SGI-1027-treated GC cells, the levels of Cyclin D1, Cyclin E1, Cyclin B1, and BCL-2 were significantly reduced, while the expression level of BAX increased (p < 0.05). Notably, the most pronounced impact was observed at 25 µmol/L SGI-1027, further underscoring its regulatory effects on tumor cell behavior (p < 0.05). In animal experiments, the Model group exhibited a substantial increase in tumor volume, with HE staining results indicating extensive necrosis in most gastric tissues and noticeable signs of lung metastasis, accompanied by increased DNMT1 expression and decreased RB1 gene expression. In contrast, the SGI-1027 group displayed a reduction in gastric tumor volume, decreased necrosis, and reduced lung tumor metastasis (p < 0.05). Additionally, the expression of DNMT1 was significantly reduced in SGI-1027-treated GC cells, while RB1 expression increased (p < 0.05), further confirming the inhibitory effects of SGI-1027 on tumor growth and metastasis. CONCLUSIONS: SGI-1027 effectively hinders the proliferation and dissemination of GC cells by downregulating DNMT1 and promoting the expression of RB1.


Assuntos
Proliferação de Células , DNA (Citosina-5-)-Metiltransferase 1 , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a Retinoblastoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Linhagem Celular Tumoral , Animais , Proliferação de Células/genética , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Camundongos , Metástase Neoplásica , Movimento Celular/genética , Camundongos Nus , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína do Retinoblastoma/genética , Camundongos Endogâmicos BALB C , Proteínas Repressoras
13.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731413

RESUMO

Ultraviolet radiation can heighten tyrosinase activity, stimulate melanocyte production, impede the metabolism of numerous melanocytes, and result in the accumulation of plaques on the skin surface. α-Arbutin, a bioactive substance extracted from the arbutin plant, has been widely used for skin whitening. In this study, the whitening effect of α-arbutin by inhibiting tyrosinase activity and alleviating the photoaging effect induced by UVB are investigated. The results indicate that α-arbutin can inhibit skin inflammation, and its effectiveness is positively correlated with concentration. Moreover, α-arbutin can reduce the skin epidermal thickness, decrease the number of inflammatory cells, and down-regulate the expression levels of IL-1ß, IL-6 and TNF-α, which are inflammatory factors. It also promotes the expression of COL-1 collagen, thus playing an important role in anti-inflammatory action. Network pharmacology, metabolomics and transcriptomics further confirm that α-arbutin is related to the L-tyrosine metabolic pathway and may interfere with various signaling pathways related to melanin and other photoaging by regulating metabolic changes. Therefore, α-arbutin has a potential inhibitory effect on UVB-induced photoaging and possesses a whitening effect as a cosmetic compound.


Assuntos
Arbutina , Envelhecimento da Pele , Raios Ultravioleta , Arbutina/farmacologia , Raios Ultravioleta/efeitos adversos , Animais , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Humanos , Pele/efeitos da radiação , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia
14.
J AOAC Int ; 107(4): 693-704, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704865

RESUMO

BACKGROUND: Infant formulas, and pediatric and adult nutritional products, are being fortified with bovine lactoferrin (bLF) due to its beneficial impacts on immune development and gut health. Lactoferrin supplementation into these products requires an analytical method to accurately quantify the concentrations of bLF to meet global regulatory and quality standards. OBJECTIVE: To develop and validate a lactoferrin method capable of meeting the AOAC INTERNATIONAL Standard Method Performance Requirements (SMPR®) 2020.005. METHODS: Powder formula samples are extracted using warm dibasic phosphate buffer, pH 8, then centrifuged at 4°C to remove insoluble proteins, fat, and other solids. The soluble fraction is further purified on a HiTrap heparin solid-phase extraction (SPE) column to isolate bLF from interferences. Samples are filtered, then analyzed by LC-UV using a protein BEH C4 analytical column and quantitated using an external calibrant. RESULTS: The LOQ (2 mg/100 g), repeatability (RSD: 2.0-4.8%), recovery (92.1-97.7%), and analytical range (4-193 mg/100 g) all meet the method requirements as stated in SMPR 2020.005 for lactoferrin. CONCLUSION: The reported single-laboratory validation (SLV) results demonstrate the ability of this lactoferrin method to meet or exceed the method performance requirements to measure soluble, intact, non-denatured bLF in infant and adult nutritional powder formulas. HIGHLIGHTS: The use of a heparin affinity column to isolate lactoferrin from bovine milk products combined with a selective analytical chromatographic column provides suitable analyte specificity without requiring proprietary equipment or reagents.


Assuntos
Fórmulas Infantis , Lactoferrina , Lactoferrina/análise , Bovinos , Fórmulas Infantis/química , Animais , Cromatografia Líquida de Alta Pressão/métodos , Heparina/análise , Heparina/química , Adulto , Lactente , Humanos , Pós/química , Extração em Fase Sólida/métodos , Cromatografia de Fase Reversa/métodos , Espectrofotometria Ultravioleta/métodos , Alimentos Formulados/análise , Reprodutibilidade dos Testes , Cromatografia de Afinidade/métodos
15.
Arch Dermatol Res ; 316(6): 214, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787420

RESUMO

We aimed to unveil the underlying pathogenic mechanisms of skin cancer in relation to metabolic factors and pathway mechanisms. This study utilized the TwoSample Mendelian randomization (MR) method to investigate the causal relationship between 1400 plasma metabolites and skin cancer. The primary method employed was the inverse variance weighting (IVW). Through IVW analysis, we found 105 plasma metabolites associated with Basal Cell Carcinoma (BCC), with the highest association observed for Prolylglycine levels (OR [95% CI]: 1.1902 [1.0274, 1.3788]). For Malignant Melanoma of Skin (MSS), 68 plasma metabolites were linked, with the highest causal relationship seen for 3-Hydroxybutyrate levels (OR [95% CI]: 1.0030 [1.0013, 1.0048]). Regarding actinic keratosis (AK), and the highest association observed for Hexadecadienoate (16:2n6) levels (OR [95% CI]: 1.3302 [1.0333, 1.7125]). Glycerol to palmitoylcarnitine (16: n6) levels (OR [95% CI]: 1.3302 [1.0333, 1.125]) were found to be significant for BCC and AK. Palmitoylcarnitine (C16) had the most positive causal effect for BCC (OR [95% CI]: 1.1777 [1.0493, 1.3218]), while 5-hydroxy-2-methylpyridine sulfate levels had the highest effect for AK (OR [95% CI]: 1.1788 [1.0295, 1.3498]). And 4-guanidinobutanoate levels had the largest positive causal effect (OR [95% CI]: 1.0857 [1.0417, 1.1317]) for BCC, and X-11880 levels for MSS (OR [95% CI]: 1.0013 [1.0000, 1.0025]). The study revealed a positive association between hereditary Glycerol to palmitoylcarnitine (C16) and 5-hydroxy-2-methylpyridine sulfate levels with the risk of developing BCC and AK. Additionally, 4-guanidinobutanoate levels and X 11880 levels were found to be positively associated with the risk of BCC and MMS.


Assuntos
Carcinoma Basocelular , Análise da Randomização Mendeliana , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/epidemiologia , Carcinoma Basocelular/sangue , Carcinoma Basocelular/genética , Carcinoma Basocelular/epidemiologia , Melanoma/sangue , Melanoma/genética , Melanoma/epidemiologia , Ceratose Actínica/sangue , Ceratose Actínica/genética , Ácido 3-Hidroxibutírico/sangue , Predisposição Genética para Doença , Melanoma Maligno Cutâneo
16.
J Cancer ; 15(11): 3452-3465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817853

RESUMO

Background: S100A8/S100A9 belong to the S100 calcium-binding protein family and play an essential role in the progression of chronic inflammation in diseases. It also regulates various biological processes such as tumor cell survival, apoptosis, and invasive metastasis. The extracellular form of S100A8/S100A9 functions by modulating cellular oxidative metabolism and facilitating inflammation-to-cancer progression. This modulation occurs through specific binding to receptors like RAGE and TLR4 and activation of signaling pathways including STAT3 and NF-κB. In tumor cells, S100A8 and S100A9 induce phenotypic changes by influencing calcium ion concentrations and other pathways. However, the precise function of high S100A8/S100A9 expression in colorectal cancer cells remains unclear. Methods: To explore the role of S100A8/S100A9 in colorectal cancer, we used immunohistochemistry and data from GEO and TCGA databases to analyze its expression in colorectal cancer cells, normal intestinal mucosa, and adjacent tissues. Functional models of high S100A8/S100A9 expression in colorectal cancer cells were established through transfection with overexpression plasmids. Protein microarrays, enzyme-linked immunosorbent assays (ELISAs), and real-time PCR were employed to assess the expression and secretion of 40 cytokines. MTT and Transwell invasion assays were conducted to evaluate changes in cell proliferation, invasion, and chemotaxis. Finally, tail vein and subcutaneous tumorigenesis assays assessed cell proliferation and migration in vivo. Results: We observed significantly higher expression of S100A8/S100A9 in colorectal cancer epithelial cells compared to normal intestinal mucosa and adjacent tissues. Overexpression of S100A8/S100A9 in mouse colon cancer cells CT26.WT led to differential increases in the secretion levels of various cytokines (CXCL5, CXCL11, GM-CSF, G-CSF, IL1a, IL1b, sTNF RI, and CCL3). Additionally, this overexpression activated signaling pathways such as STAT3, NF-κB, and ERK-MAPK. The synthesis and secretion of inflammatory factors could be inhibited by using NF-κB and ERK-MAPK pathway inhibitors. Moreover, S100A8 promotes the proliferation and invasion of colon cancer cells. Notably, the CXCR2 inhibitor (SB265610) effectively reversed the phenotypic changes induced by the CXCL5/CXCR2 biological axis. Conclusions: Our findings indicate that increased expression of S100A8 and S100A9 in colon cancer epithelial cells enhances the secretion of inflammatory factors by activating NF-κB, ERK-MAPK, and other signaling pathways. S100A8 facilitates colon cancer cell proliferation, invasion, and metastasis through the CXCL5/CXCR2 biological axis.

17.
Langmuir ; 40(21): 11011-11022, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38739267

RESUMO

Surfactant-free microemulsions (SFMEs) exhibited remarkable advantages and potential, attributed to their similarity to traditional surfactant-based microemulsions and the absence of surfactants. Herein, a novel SFME was developed utilizing cosmetically approved materials, such as short-chain alcohol as an amphi-solvent, triethyl citrate (TEC) as the nonpolar phase, and water as the polar phase. 1,2-Pentanediol (PtDO)/TEC/water combination can form the largest monophasic zone, accounting for ∼74% of the total phase diagram area, due to an optimal hydrophilic (water)-lipophilic (TEC) balance. Comparable to surfactant-based microemulsion, PtDO/TEC/water SFME can also be categorized into three types: water-in-oil, discontinuous, and oil-in-water. As TEC or water is increased, or PtDO is decreased, the nanoaggregates in PtDO/TEC/water SFME grow from <5 nm to tens of nanometers. The addition of α-arbutin (ABN) does not disrupt PtDO/TEC/water SFME, but rather enhances its formation, resulting in a larger monophasic area and consistent size (2.8-3.8 nm) through participating in interface assembly. Furthermore, ABN-loaded PtDO/TEC/water SFME exhibits remarkable resistance to dilution, exceptional stability, and minimal irritation. Notably, PtDO/TEC/water SFME significantly boosts ABN's solubility in water by 2 times, its percutaneous penetration rate by 3-4 times, and enables a slow-release DPPH• radical scavenging effect. This SFME serves as a safe and cosmetically suitable nanoplatform for the delivery of bioactive substances.


Assuntos
Arbutina , Emulsões , Água , Emulsões/química , Água/química , Arbutina/química , Arbutina/farmacocinética , Animais , Tensoativos/química , Absorção Cutânea/efeitos dos fármacos , Administração Cutânea , Cosméticos/química , Citratos/química
18.
Angew Chem Int Ed Engl ; 63(29): e202402133, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708621

RESUMO

We describe small heterojunction polymer dots (Pdots) with deep-red light catalyzed H2 generation for diabetic skin wound healing. The Pdots with donor/acceptor heterojunctions showed remarkably enhanced photocatalytic activity as compared to the donor or acceptor nanoparticles alone. We encapsulate the Pdots and ascorbic acid into liposomes to form Lipo-Pdots nanoreactors, which selectively scavenge ⋅OH radicals in live cells and tissues under 650 nm light illumination. The antioxidant capacity of the heterojunction Pdots is ~10 times higher than that of the single-component Pdots described previously. Under a total light dose of 360 J/cm2, the Lipo-Pdots nanoreactors effectively scavenged ⋅OH radicals and suppressed the expression of pro-inflammatory cytokines in skin tissues, thereby accelerating the healing of skin wounds in diabetic mice. This study provides a feasible solution for safe and effective treatment of diabetic foot ulcers.


Assuntos
Diabetes Mellitus Experimental , Hidrogênio , Luz , Polímeros , Cicatrização , Cicatrização/efeitos dos fármacos , Hidrogênio/química , Animais , Camundongos , Polímeros/química , Humanos , Pontos Quânticos/química , Luz Vermelha
19.
Nat Commun ; 15(1): 2894, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570494

RESUMO

Steroidal glycoalkaloids (SGAs) are major plant defense metabolites against pests, while they are considered poisonous in food. The genetic basis that guides negative selection of SGAs production during tomato domestication remains poorly understood. Here, we identify a distal enhancer, GAME Enhancer 1 (GE1), as the key regulator of SGAs metabolism in tomato. GE1 recruits MYC2-GAME9 transcriptional complex to regulate the expression of GAME cluster genes via the formation of chromatin loops located in the neighboring DNA region. A naturally occurring GE176 allelic variant is found to be more active in stimulating GAME expression. We show that the weaker GE1 allele has been the main driver for selecting reduced SGAs levels during tomato domestication. Unravelling the "TFs-Enhancer-Promoter" regulatory mechanism operating in SGAs metabolism opens unprecedented prospects for SGAs manipulation in Solanaceae via precision breeding strategies.


Assuntos
Solanaceae , Solanum lycopersicum , Solanum lycopersicum/genética , Domesticação , Melhoramento Vegetal , Esteroides
20.
Heliyon ; 10(7): e28672, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596072

RESUMO

GC is a gastrointestinal tumor with high morbidity and mortality. Owing to the high rate of postoperative recurrence associated with GC, the effectiveness of radiotherapy and chemotherapy may be compromised by the occurrence of severe undesirable side effects. In light of these circumstances, KP, a flavonoid abundantly present in diverse herbal and fruit sources, emerges as a promising therapeutic agent with inherent anti-tumor properties. This study endeavors to demonstrate the therapeutic potential of KP in the context of GC while unraveling the intricate underlying mechanisms. Notably, our investigations unveil that KP stimulation effectively promotes the activation of NLRP3 inflammatory vesicles within AGS cells by engaging the NF-κB signaling pathway. Consequently, the signal cascade triggers the cleavage of Caspase-1, culminating in the liberation of IL-18. Furthermore, we ascertain that KP facilitate AGS cell pyroptosis by inducing mitochondrial damage. Collectively, our findings showcase KP as a compelling candidate for the treatment of GC-related diseases, heralding new possibilities for future therapeutic interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA