Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Neurobiol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829513

RESUMO

Approximately one-third of postoperative patients are troubled by postoperative pain. Effective treatments are still lacking. The aim of this study is to investigate the role of brain-derived neurotrophic factor (BDNF)-VGF (non-acronymic) in dorsal root ganglia (DRG) in postoperative pain. Pain behaviors were assessed through measurements of paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). Transcriptome analysis was conducted to identify potential targets associated with postoperative pain. Western blotting, immunofluorescence, and ELISA were employed to further detect macrophage activation as well as the expression of BDNF, VGF, TNF-α, IL-1ß, and IL-6. Results showed that plantar incision induced both mechanical and thermal hyperalgesia. Transcriptome analysis suggested that plantar incision caused upregulation of BDNF and VGF. The expressions of BDNF and VGF were upregulated in isolectin B4-positive (IB4+) and calcitonin gene-related peptide-positive (CGRP+) neurons, rather than neurofilament 200-positive (NF200+) neurons. The activation of BDNF-VGF pathway upregulated expression of IL-6, TNF-α, and IL-1ß and promoted the activation of macrophages. In conclusion, BDNF-VGF pathway aggravates acute postoperative pain by promoting macrophage activation and pro-inflammatory cytokine production, which may provide a new target for the treatment of postoperative pain.

2.
Cell Biosci ; 14(1): 51, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643205

RESUMO

Pain is a common symptom of many diseases with a high incidence rate. Clinically, drug treatment, as the main method to relieve pain at present, is often accompanied by different degrees of adverse reactions. Therefore, it is urgent to gain a profound understanding of the pain mechanisms in order to develop advantageous analgesic targets. The PD-L1/PD-1 pathway, an important inhibitory molecule in the immune system, has taken part in regulating neuroinflammation and immune response. Accumulating evidence indicates that the PD-L1/PD-1 pathway is aberrantly activated in various pain models. And blocking PD-L1/PD-1 pathway will aggravate pain behaviors. This review aims to summarize the emerging evidence on the role of the PD-L1/PD-1 pathway in alleviating pain and provide an overview of the mechanisms involved in pain resolution, including the regulation of macrophages, microglia, T cells, as well as nociceptor neurons. However, its underlying mechanism still needs to be further elucidated in the future. In conclusion, despite more deep researches are needed, these pioneering studies indicate that PD-L1/PD-1 may be a potential neuroimmune target for pain relief.

3.
Front Genet ; 14: 1187415, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693312

RESUMO

Introduction: Dexmedetomidine (DXM) is widely used as an adjuvant to anesthesia or a sedative medicine, and differences in individual sensitivity to the drug exist. This study aimed to investigate the effect of genetic polymorphisms on these differences. Methods: A total of 112 patients undergoing hand surgery were recruited. DXM 0.5 µg/kg was administered within 10 min and then continuously injected (0.4 µg/kg/h). Narcotrend index, effective dose and onset time of sedation, MAP, and HR were measured. Forty-five single nucleotide polymorphisms (SNPs) were selected for genotype. Results: We observed individual differences in the sedation and hemodynamics induced by DXM. ABCG2 rs2231142, CYP2D6 rs16947, WBP2NL rs5758550, KATP rs141294036, KCNMB1 rs11739136, KCNMA1 rs16934182, ABCC9 rs11046209, ADRA2A rs1800544, and ADRB2 rs1042713 were shown to cause statistically significant (p < 0.05) influence on the individual variation of DXM on sedation and hemodynamics. Moreover, the multiple linear regression analysis indicated sex, BMI, and ADRA2A rs1800544 are statistically related to the effective dose of DXM sedation. Discussion: The evidence suggests that the nine SNPs involved in transport proteins, metabolic enzymes, and target proteins of DXM could explain the individual variability in the sedative and hemodynamic effects of DXM. Therefore, with SNP genotyping, these results could guide personalized medication and promote clinical and surgical management.

4.
Int J Biol Sci ; 19(11): 3472-3482, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497005

RESUMO

Pain, one of the most important problems in the field of medicine and public health, has great research significance. Opioids are still the main drugs to relieve pain now. However, its application is limited due to its obvious side effects. Therefore, it is urgent to develop new drugs to relieve pain. Multiple studies have found that IGF/IGF-1R pathway plays an important role in the occurrence and development of pain. The regulation of IGF/IGF-1R pathway has obvious effect on pain. This review summarized and discussed the therapeutic potential of IGF/IGF-1R signal pathway for pain. It also summarized that IGF/IGF-1R regulates pain by acting on neuronal excitability, neuroinflammation, glial cells, apoptosis, etc. However, its mechanisms of occurrence and development in pain still need further study in the future. In conclusion, although more deep researches are needed, these studies indicate that IGF/IGF-1R signal pathway is a promising therapeutic target for pain.


Assuntos
Apoptose , Transdução de Sinais , Humanos
5.
Front Med (Lausanne) ; 8: 678185, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917626

RESUMO

Background: Volatile anesthetic-induced agitation, also called paradoxical excitation, is not uncommon during anesthesia induction. Clinically, patients with agitation may lead to self-injury or disrupt the operative position, increasing the incidence of perioperative adverse events. The study was designed to investigate clinical features of sevoflurane-induced agitation and examined whether any gene polymorphisms can potentially be used to predict agitation. Methods: One hundred seventy-six patients underwent anesthesia induction with sevoflurane were included in this study. Frontal electroencephalogram (EEG), electromyography (EMG), and hemodynamics were recorded continuously during anesthesia induction. DNA samples were genotyped using the Illumina Infinium Asian Screening Array and the SNaPshot technology. Genetic association was analyzed by genome-wide association study. Logistic regression analysis was used to determine the role of variables in the prediction of agitation. Results: Twenty-five (14.2%) patients experienced agitation. The depth of anesthesia index (Ai index) (p < 0.001), EMG (p < 0.001), heart rate (HR) (p < 0.001), and mean arterial pressure (MAP) (p < 0.001) rapidly increased during the agitation. EEG exhibited a shift toward high frequencies with spikes during agitation. The fast waves (alpha and beta) were more pronounced and the slow rhythms (delta) were less prominent during the occurrence of agitation. Moreover, three SNPs in the methionine synthase reductase (MTRR) gene were correlated to the susceptibility to agitation (p < 5.0 × 10-6). Carrying rs1801394 A > G (odds ratio 3.50, 95% CI 1.43-9.45) and/or rs2307116 G > A (3.31, 1.36-8.95) predicted a higher risk of agitation. Discussion: This study suggests that the agitation/paradoxical excitation induced by sevoflurane is characterized as increases in Ai index, EMG, HR and MAP, and the high frequency with spikes in EEG. Moreover, our results provide preliminary evidence for MTRR genetic polymorphisms, involving folate metabolism function, may be related to the susceptibility to agitation. Clinical Trial Number and Registry URL: ChiCTR1900026218; http://www.chictr.org.cn/showproj.aspx?proj=40655.

6.
Oncotarget ; 9(16): 12907-12917, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29560119

RESUMO

It is widely accepted that the induction dose of anesthetics is higher in infants than in adults, although the relevant molecular mechanism remains elusive. We previously showed neuronal hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels contribute to hypnotic actions of propofol and ketamine. Interestingly, the expression of HCN channels in neocortex significantly changes during postnatal periods. Thus, we postulated that changes in HCN channels expression might contribute to sensitivity to intravenous anesthetics. Here we showed the EC50 for propofol- and ketamine-induced loss-of-righting reflex (LORR) was significantly lower for P35 than for P14 mice. Cerebrospinal fluid concentrations of propofol and ketamine were significantly higher in P14 mice than in P35 mice, with similar propofol- and ketamine-induced anesthesia at the LORR EC50. Western blotting indicated that the expression of HCN channels in neocortex changed significantly from P14 to P35 mice. In addition, the amplitude of HCN currents in the neocortical layer 5 pyramidal neurons and the inhibition of propofol and ketamine on HCN currents dramatically increased with development. Logistic regression analysis indicated that the changes of HCN channels were correlated with the age-related differences of propofol- and ketamine-induced anesthesia. These data reveal that the change of HCN channels expression with postnatal development may contribute to sensitivity to the hypnotic actions of propofol and ketamine in mice.

7.
Sci Rep ; 7: 44203, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276488

RESUMO

Postconditioning with inhalational anesthetics can reduce ischemia-reperfusion brain injury, although the cellular mechanisms for this effect have not been determined. The current study was designed to test if TASK channels contribute to their neuroprotective actions. Whole cell recordings were used to examine effects of volatile anesthetic on TASK currents in cortical neurons and to verify loss of anesthetic-activated TASK currents from TASK-/- mice. A transient middle cerebral artery occlusion (tMCAO) model was used to establish brain ischemia-reperfusion injury. Quantitative RT-PCR analysis revealed that TASK mRNA was reduced by >90% in cortex and hippocampus of TASK-/- mice. The TASK-/- mice showed a much larger region of infarction than C57BL/6 J mice after tMCAO challenge. Isoflurane or sevoflurane administered after the ischemic insult reduced brain infarct percentage and neurological deficit scores in C57BL/6 J mice, these effect were reduced in TASK-/- mice. Whole cell recordings revealed that the isoflurane-activated background potassium current observed in cortical pyramidal neurons from wild type mice was conspicuously reduced in TASK-/- mice. Our studies demonstrate that TASK channels can limit ischemia-reperfusion damage in the cortex, and postconditioning with volatile anesthetics provides neuroprotective actions that depend, in part, on activation of TASK currents in cortical neurons.


Assuntos
Anestésicos Inalatórios/farmacologia , Isquemia Encefálica/tratamento farmacológico , Córtex Cerebral/metabolismo , Isoflurano/farmacologia , Éteres Metílicos/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/farmacologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Córtex Cerebral/patologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Sevoflurano
8.
Sci Rep ; 7: 42550, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28195232

RESUMO

Neuropathic pain symptoms respond poorly to available therapeutics, with most treated patients reporting unrelieved pain and significant impairment in daily life. Here, we show that Pannexin 1 (Panx1) in hematopoietic cells is required for pain-like responses following nerve injury in mice, and a potential therapeutic target. Panx1 knockout mice (Panx1-/-) were protected from hypersensitivity in two sciatic nerve injury models. Bone marrow transplantation studies show that expression of functional Panx1 in hematopoietic cells is necessary for mechanical hypersensitivity following nerve injury. Reconstitution of irradiated Panx1 knockout mice with hematopoietic Panx1-/- cells engineered to re-express Panx1 was sufficient to recover hypersensitivity after nerve injury; this rescue required expression of a Panx1 variant that can be activated by G protein-coupled receptors (GPCRs). Finally, chemically distinct Panx1 inhibitors blocked development of nerve injury-induced hypersensitivity and partially relieved this hypersensitivity after it was established. These studies indicate that Panx1 expressed in immune cells is critical for pain-like effects following nerve injury in mice, perhaps via a GPCR-mediated activation mechanism, and suggest that inhibition of Panx1 may be useful in treating neuropathic pain.


Assuntos
Conexinas/genética , Conexinas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/etiologia , Neuralgia/metabolismo , Animais , Células da Medula Óssea/metabolismo , Conexinas/antagonistas & inibidores , Modelos Animais de Doenças , Feminino , Expressão Gênica , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/antagonistas & inibidores , Neuralgia/tratamento farmacológico , Neuralgia/fisiopatologia , Traumatismos dos Nervos Periféricos/complicações , Ativação Transcricional
9.
Nat Commun ; 8: 14324, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134257

RESUMO

Pannexin 1 (PANX1) subunits form oligomeric plasma membrane channels that mediate nucleotide release for purinergic signalling, which is involved in diverse physiological processes such as apoptosis, inflammation, blood pressure regulation, and cancer progression and metastasis. Here we explore the mechanistic basis for PANX1 activation by using wild type and engineered concatemeric channels. We find that PANX1 activation involves sequential stepwise sojourns through multiple discrete open states, each with unique channel gating and conductance properties that reflect contributions of the individual subunits of the hexamer. Progressive PANX1 channel opening is directly linked to permeation of ions and large molecules (ATP and fluorescent dyes) and occurs during both irreversible (caspase cleavage-mediated) and reversible (α1 adrenoceptor-mediated) forms of channel activation. This unique, quantized activation process enables fine tuning of PANX1 channel activity and may be a generalized regulatory mechanism for other related multimeric channels.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Membrana Celular/metabolismo , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Multimerização Proteica/fisiologia , Trifosfato de Adenosina/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Carbenoxolona/farmacologia , Inibidores de Caspase/farmacologia , Caspases/metabolismo , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular/efeitos dos fármacos , Conexinas/antagonistas & inibidores , Conexinas/ultraestrutura , Corantes Fluorescentes/farmacocinética , Fluoroquinolonas/farmacologia , Células HEK293 , Humanos , Íons/metabolismo , Células Jurkat , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Microscopia Eletrônica , Naftiridinas/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/ultraestrutura , Técnicas de Patch-Clamp , Quinolinas/farmacologia , Receptores Adrenérgicos alfa 1/metabolismo
10.
Neurochem Res ; 41(12): 3250-3260, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27655256

RESUMO

Neuropathic pain (NP) is a clinically incurable disease with miscellaneous causes, complicated mechanisms and available therapies show poor curative effect. Some recent studies have indicated that neuroinflammation plays a vital role in the occurrence and promotion of NP and anti-inflammatory therapy has the potential to relieve the pain. During the past decades, mesenchymal stem cells (MSCs) with properties of multipotentiality, low immunogenicity and anti-inflammatory activity have showed excellent therapeutic effects in cell therapy from animal models to clinical application, thus aroused great attention. However there are no reports about the effect of intrathecal human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) on NP which is induced by peripheral nerve injury. Therefore, in this study, intrathecally transplanted HUC-MSCs were utilized to examine the effect on neuropathic pain induced by a rat model with spinal nerve ligation (SNL), so as to explore the possible mechanism of those effects. As shown in the results, the HUC-MSCs transplantation obviously ameliorated SNL-induced mechanical allodynia and thermal hyperalgesia, which was related to the inhibiting process of neuroinflammation, including the suppression of activated astrocytes and microglia, as well as the significant reduction of pro-inflammatory cytokines Interleukin-1ß (IL-1ß) and Interleukin -17A (IL-17A) and the up-regulation of anti-inflammatory cytokine Interleukin -10 (IL-10). Therefore, through the effect on glial cells, pro-inflammatory and anti-inflammatory cytokine, the targeting intrathecal HUC-MSCs may offer a novel treatment strategy for NP.


Assuntos
Transplante de Células-Tronco Mesenquimais , Neuralgia/terapia , Cordão Umbilical/citologia , Animais , Astrócitos/metabolismo , Humanos , Hiperalgesia/etiologia , Hiperalgesia/fisiopatologia , Hiperalgesia/terapia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/terapia , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-1beta/metabolismo , Ligadura , Masculino , Microglia/metabolismo , Neuralgia/etiologia , Neuralgia/fisiopatologia , Ratos Sprague-Dawley , Nervos Espinhais/lesões
11.
J Neurosci ; 36(31): 8174-87, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27488637

RESUMO

UNLABELLED: The activity of background potassium and sodium channels determines neuronal excitability, but physiological roles for "leak" Na(+) channels in specific mammalian neurons have not been established. Here, we show that a leak Na(+) channel, Nalcn, is expressed in the CO2/H(+)-sensitive neurons of the mouse retrotrapezoid nucleus (RTN) that regulate breathing. In RTN neurons, Nalcn expression correlated with higher action potential discharge over a more alkalized range of activity; shRNA-mediated depletion of Nalcn hyperpolarized RTN neurons, and reduced leak Na(+) current and firing rate. Nalcn depletion also decreased RTN neuron activation by the neuropeptide, substance P, without affecting pH-sensitive background K(+) currents or activation by a cotransmitter, serotonin. In vivo, RTN-specific knockdown of Nalcn reduced CO2-evoked neuronal activation and breathing; hypoxic hyperventilation was unchanged. Thus, Nalcn regulates RTN neuronal excitability and stimulation by CO2, independent of direct pH sensing, potentially contributing to respiratory effects of Nalcn mutations; transmitter modulation of Nalcn may underlie state-dependent changes in breathing and respiratory chemosensitivity. SIGNIFICANCE STATEMENT: Breathing is an essential, enduring rhythmic motor activity orchestrated by dedicated brainstem circuits that require tonic excitatory drive for their persistent function. A major source of drive is from a group of CO2/H(+)-sensitive neurons in the retrotrapezoid nucleus (RTN), whose ongoing activity is critical for breathing. The ionic mechanisms that support spontaneous activity of RTN neurons are unknown. We show here that Nalcn, a unique channel that generates "leak" sodium currents, regulates excitability and neuromodulation of RTN neurons and CO2-stimulated breathing. Thus, this work defines a specific function for this enigmatic channel in an important physiological context.


Assuntos
Geradores de Padrão Central/fisiologia , Células Quimiorreceptoras/fisiologia , Canais Iônicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Mecânica Respiratória/fisiologia , Sódio/metabolismo , Complexo Olivar Superior/fisiologia , Animais , Dióxido de Carbono/metabolismo , Células Cultivadas , Feminino , Ativação do Canal Iônico/fisiologia , Masculino , Proteínas de Membrana , Camundongos
12.
J Neurosci ; 33(18): 7756-61, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23637167

RESUMO

Central respiratory chemoreceptors sense changes in CO2/H(+) and initiate the adjustments to ventilation required to preserve brain and tissue pH. The cellular nature of the sensors (neurons and/or glia) and their CNS location are not conclusively established but the glutamatergic, Phox2b-expressing neurons located in the retrotrapezoid nucleus (RTN) are strong candidates. However, a direct demonstration that RTN neurons are intrinsically sensitive to CO2/H(+), required for designation as a chemosensor, has been lacking. To address this, we tested the pH sensitivity of RTN neurons that were acutely dissociated from two lines of Phox2b-GFP BAC transgenic mice. All GFP-labeled cells assayed by reverse transcriptase-PCR (n = 40) were Phox2b+, VGlut2+, TH-, and ChAT-, the neurochemical phenotype previously defined for chemosensitive RTN neurons in vivo. We found that most dissociated RTN neurons from both lines of mice were CO2/H(+)-sensitive (∼79%), with discharge increasing during acidification and decreasing during alkalization. The pH-sensitive cells could be grouped into two populations characterized by similar pH sensitivity but different basal firing rates, as previously observed in recordings from GFP-labeled RTN neurons in slice preparations. In conclusion, these data indicate that RTN neurons are inherently pH-sensitive, as expected for a respiratory chemoreceptor.


Assuntos
Dióxido de Carbono/farmacologia , Células Quimiorreceptoras/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Bulbo/citologia , Prótons , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Células Quimiorreceptoras/classificação , Células Quimiorreceptoras/metabolismo , Colina O-Acetiltransferase/metabolismo , Regulação da Expressão Gênica/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/genética , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
13.
Anesthesiology ; 118(4): 785-95, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23377220

RESUMO

BACKGROUND: Ketamine is a commonly used anesthetic, but the mechanistic basis for its clinically relevant actions remains to be determined. The authors previously showed that HCN1 channels are inhibited by ketamine and demonstrated that global HCN1 knockout mice are twofold less sensitive to hypnotic actions of ketamine. Although that work identified HCN1 channels as a viable molecular target for ketamine, it did not determine the relevant neural substrate. METHODS: To localize the brain region responsible for HCN1-mediated hypnotic actions of ketamine, the authors used a conditional knockout strategy to delete HCN1 channels selectively in excitatory cells of the mouse forebrain. A combination of molecular, immunohistochemical, and cellular electrophysiologic approaches was used to verify conditional HCN1 deletion; a loss-of-righting reflex assay served to ascertain effects of forebrain HCN1 channel ablation on hypnotic actions of ketamine. RESULTS: In conditional knockout mice, HCN1 channels were selectively deleted in cortex and hippocampus, with expression retained in cerebellum. In cortical pyramidal neurons from forebrain-selective HCN1 knockout mice, effects of ketamine on HCN1-dependent membrane properties were absent; notably, ketamine was unable to evoke membrane hyperpolarization or enhance synaptic inputs. Finally, the EC50 for ketamine-induced loss-of-righting reflex was shifted to significantly higher concentrations (by approximately 31%). CONCLUSIONS: These data indicate that forebrain principal cells represent a relevant neural substrate for HCN1-mediated hypnotic actions of ketamine. The authors suggest that ketamine inhibition of HCN1 shifts cortical neuron electroresponsive properties to contribute to ketamine-induced hypnosis.


Assuntos
Analgésicos/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Hipnóticos e Sedativos/farmacologia , Ketamina/farmacologia , Canais de Potássio , Prosencéfalo/efeitos dos fármacos , Animais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Camundongos , Camundongos Transgênicos
14.
Anesthesiology ; 115(5): 1003-11, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21946151

RESUMO

BACKGROUND: Local anesthetics (LAs) are typically used for regional anesthesia but can be given systemically to mitigate postoperative pain, supplement general anesthesia, or prevent cardiac arrhythmias. However, systemic application or inadvertent intravenous injection can be associated with substantial toxicity, including seizure induction. The molecular basis for this toxic action remains unclear. METHODS: We characterized inhibition by different LAs of homomeric and heteromeric K channels containing TASK-1 (K2P3.1, KCNK3) and TASK-3 (K2P9.1, KCNK9) subunits in a mammalian expression system. In addition, we used TASK-1/TASK-3 knockout mice to test the possibility that TASK channels contribute to LA-evoked seizures. RESULTS: LAs inhibited homomeric and heteromeric TASK channels in a range relevant for seizure induction; channels containing TASK-1 subunits were most sensitive and IC50 values indicated a rank order potency of bupivacaine > ropivacaine >> lidocaine. LAs induced tonic-clonic seizures in mice with the same rank order potency, but higher LA doses were required to evoke seizures in TASK knockout mice. For bupivacaine, which produced the longest seizure times, seizure duration was significantly shorter in TASK knockout mice; bupivacaine-induced seizures were associated with an increase in electroencephalogram power at frequencies less than 5 Hz in both wild-type and TASK knockout mice. CONCLUSIONS: These data suggest that increased neuronal excitability associated with TASK channel inhibition by LAs contributes to seizure induction. Because all LAs were capable of evoking seizures in TASK channel deleted mice, albeit at higher doses, the results imply that other molecular targets must also be involved in this toxic action.


Assuntos
Anestésicos Locais/farmacologia , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Convulsões/induzido quimicamente , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Eletroencefalografia , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/antagonistas & inibidores , Picrotoxina/farmacologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores
15.
J Neurosci ; 30(22): 7691-704, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20519544

RESUMO

General anesthetics cause sedation, hypnosis, and immobilization via CNS mechanisms that remain incompletely understood; contributions of particular anesthetic targets in specific neural pathways remain largely unexplored. Among potential molecular targets for mediating anesthetic actions, members of the TASK subgroup [TASK-1 (K2P3.1) and TASK-3 (K2P9.1)] of background K(+) channels are appealing candidates since they are expressed in CNS sites relevant to anesthetic actions and activated by clinically relevant concentrations of inhaled anesthetics. Here, we used global and conditional TASK channel single and double subunit knock-out mice to demonstrate definitively that TASK channels account for motoneuronal, anesthetic-activated K(+) currents and to test their contributions to sedative, hypnotic, and immobilizing anesthetic actions. In motoneurons from all knock-out mice lines, TASK-like currents were reduced and cells were less sensitive to hyperpolarizing effects of halothane and isoflurane. In an immobilization assay, higher concentrations of both halothane and isoflurane were required to render TASK knock-out animals unresponsive to a tail pinch; in assays of sedation (loss of movement) and hypnosis (loss-of-righting reflex), TASK knock-out mice showed a modest decrease in sensitivity, and only for halothane. In conditional knock-out mice, with TASK channel deletion restricted to cholinergic neurons, immobilizing actions of the inhaled anesthetics and sedative effects of halothane were reduced to the same extent as in global knock-out lines. These data indicate that TASK channels in cholinergic neurons are molecular substrates for select actions of inhaled anesthetics; for immobilization, which is spinally mediated, these data implicate motoneurons as the likely neuronal substrates.


Assuntos
Anestésicos Inalatórios/farmacologia , Resposta de Imobilidade Tônica/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Fenômenos Biofísicos/efeitos dos fármacos , Fenômenos Biofísicos/genética , Tronco Encefálico/citologia , Linhagem Celular Transformada , Colina O-Acetiltransferase/metabolismo , Relação Dose-Resposta a Droga , Estimulação Elétrica , Feminino , Deleção de Genes , Halotano/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Isoflurano/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/deficiência
16.
J Neurosci ; 30(7): 2611-22, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20164346

RESUMO

Homeostatic control of synaptic efficacy is often mediated by dynamic regulation of excitatory synaptic receptors. Here, we report a novel form of homeostatic synaptic plasticity based on regulation of shunt currents that control dendritosomatic information transfer. In cortical pyramidal neurons from wild-type mice, HCN1 channels underlie a dendritic hyperpolarization-activated cationic current (I(h)) that serves to limit temporal summation of synaptic inputs. In HCN1 knock-out mice, as expected, I(h) is reduced in pyramidal neurons and its effects on synaptic summation are strongly diminished. Unexpectedly, we found a markedly enhanced bicuculline- and L-655,708-sensitive background GABA(A) current in these cells that could be attributed to selective upregulation of GABA(A) alpha5 subunit expression in the cortex of HCN1 knock-out mice. Strikingly, despite diminished I(h), baseline sublinear summation of evoked EPSPs was unchanged in pyramidal neurons from HCN1 knock-out mice; however, blocking tonic GABA(A) currents with bicuculline enhanced synaptic summation more strongly in pyramidal cells from HCN1 knock-out mice than in those cells from wild-type mice. Increasing tonic GABA(A) receptor conductance in the context of reduced I(h), using computational or pharmacological approaches, restored normal baseline synaptic summation, as observed in neurons from HCN1 knock-out mice. These data indicate that upregulation of alpha5 subunit-mediated GABA(A) receptor tonic current compensates quantitatively for loss of dendritic I(h) in cortical pyramidal neurons from HCN1 knock-out mice to maintain normal synaptic summation; they further imply that dendritosomatic synaptic efficacy is a controlled variable for homeostatic regulation of cortical neuron excitability in vivo.


Assuntos
Córtex Cerebral/citologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Canais de Potássio/deficiência , Canais de Potássio/fisiologia , Células Piramidais/fisiologia , Receptores de GABA-A/fisiologia , Sinapses/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Ansiolíticos/farmacologia , Bicuculina/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Desoxicorticosterona/análogos & derivados , Desoxicorticosterona/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , GABAérgicos/farmacologia , Homeostase/genética , Homeostase/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Neurológicos , Técnicas de Patch-Clamp/métodos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Piridazinas/farmacologia , Pirimidinas/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Valina/análogos & derivados , Valina/farmacologia
17.
J Neurosci ; 29(3): 600-9, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19158287

RESUMO

Ketamine has important anesthetic, analgesic, and psychotropic actions. It is widely believed that NMDA receptor inhibition accounts for ketamine actions, but there remains a dearth of behavioral evidence to support this hypothesis. Here, we present an alternative, behaviorally relevant molecular substrate for anesthetic effects of ketamine: the HCN1 pacemaker channels that underlie a neuronal hyperpolarization-activated cationic current (I(h)). Ketamine caused subunit-specific inhibition of recombinant HCN1-containing channels and neuronal I(h) at clinically relevant concentrations; the channels were more potently inhibited by S-(+)-ketamine than racemic ketamine, consistent with anesthetic actions of the compounds. In cortical pyramidal neurons from wild-type, but not HCN1 knock-out mice, ketamine induced membrane hyperpolarization and enhanced dendritosomatic synaptic coupling; both effects are known to promote cortical synchronization and support slow cortical rhythms, like those accompanying anesthetic-induced hypnosis. Accordingly, we found that the potency for ketamine to provoke a loss-of-righting reflex, a behavioral correlate of hypnosis, was strongly reduced in HCN1 knock-out mice. In addition, hypnotic sensitivity to two other intravenous anesthetics in HCN1 knock-out mice matched effects on HCN1 channels; propofol selectively inhibited HCN1 channels and propofol sensitivity was diminished in HCN1 knock-out mice, whereas etomidate had no effect on HCN1 channels and hypnotic sensitivity to etomidate was unaffected by HCN1 gene deletion. These data advance HCN1 channels as a novel molecular target for ketamine, provide a plausible neuronal mechanism for enhanced cortical synchronization during anesthetic-induced hypnosis and suggest that HCN1 channels might contribute to other unexplained actions of ketamine.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Hipnóticos e Sedativos/farmacologia , Ketamina/farmacologia , Neurônios/efeitos dos fármacos , Canais de Potássio/metabolismo , Subunidades Proteicas/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Fenômenos Biofísicos , Linhagem Celular Transformada , Córtex Cerebral/citologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Estimulação Elétrica/métodos , Etomidato/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Proteínas de Fluorescência Verde/genética , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Técnicas de Patch-Clamp , Canais de Potássio/deficiência , Canais de Potássio/genética , Subunidades Proteicas/genética , Pirimidinas/farmacologia , Transfecção
18.
J Neurophysiol ; 101(1): 129-40, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18971302

RESUMO

The ionic mechanisms that contribute to general anesthetic actions have not been elucidated, although increasing evidence has pointed to roles for subthreshold ion channels, such as the HCN channels underlying the neuronal hyperpolarization-activated cationic current (Ih). Here, we used conventional HCN1 knockout mice to test directly the contributions of specific HCN subunits to effects of isoflurane, an inhalational anesthetic, on membrane and integrative properties of motor and cortical pyramidal neurons in vitro. Compared with wild-type mice, residual Ih from knockout animals was smaller in amplitude and presented with HCN2-like properties. Inhibition of Ih by isoflurane previously attributed to HCN1 subunit-containing channels (i.e., a hyperpolarizing shift in half-activation voltage [V1/2]) was absent in neurons from HCN1 knockout animals; the remaining inhibition of current amplitude could be attributed to effects on residual HCN2 channels. We also found that isoflurane increased temporal summation of excitatory postsynaptic potentials (EPSPs) in cortical neurons from wild-type mice; this effect was predicted by simulation of anesthetic-induced dendritic Ih inhibition, which also revealed more prominent summation accompanying shifts in V1/2 (an HCN1-like effect) than decreased current amplitude (an HCN2-like effect). Accordingly, anesthetic-induced EPSP summation was not observed in cortical cells from HCN1 knockout mice. In wild-type mice, the enhanced synaptic summation observed with low concentrations of isoflurane contributed to a net increase in cortical neuron excitability. In summary, HCN channel subunits account for distinct anesthetic effects on neuronal membrane properties and synaptic integration; inhibition of HCN1 in cortical neurons may contribute to the synaptically mediated slow-wave cortical synchronization that accompanies anesthetic-induced hypnosis.


Assuntos
Anestésicos Inalatórios/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Isoflurano/farmacologia , Canais de Potássio/genética , Canais de Potássio/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Simulação por Computador , Sincronização Cortical , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Técnicas In Vitro , Canais Iônicos/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
19.
J Neurophysiol ; 94(6): 3872-83, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16093340

RESUMO

The contributions of the hyperpolarization-activated current, I(h), to generation of rhythmic activities are well described for various central neurons, particularly in thalamocortical circuits. In the present study, we investigated effects of a general anesthetic, propofol, on native I(h) in neurons of thalamus and cortex and on the corresponding cloned HCN channel subunits. Whole cell voltage-clamp recordings from mouse brain slices identified neuronal I(h) currents with fast activation kinetics in neocortical pyramidal neurons and with slower kinetics in thalamocortical relay cells. Propofol inhibited the fast-activating I(h) in cortical neurons at a clinically relevant concentration (5 microM); inhibition of I(h) involved a hyperpolarizing shift in half-activation voltage (DeltaV1/2 approximately -9 mV) and a decrease in maximal available current (approximately 36% inhibition, measured at -120 mV). With the slower form of I(h) expressed in thalamocortical neurons, propofol had no effect on current activation or amplitude. In heterologous expression systems, 5 muM propofol caused a large shift in V1/2 and decrease in current amplitude in homomeric HCN1 and linked heteromeric HCN1-HCN2 channels, both of which activate with fast kinetics but did not affect V1/2 or current amplitude of slowly activating homomeric HCN2 channels. With GABA(A) and glycine receptor channels blocked, propofol caused membrane hyperpolarization and suppressed action potential discharge in cortical neurons; these effects were occluded by the I(h) blocker, ZD-7288. In summary, these data indicate that propofol selectively inhibits HCN channels containing HCN1 subunits, such as those that mediate I(h) in cortical pyramidal neurons-and they suggest that anesthetic actions of propofol may involve inhibition of cortical neurons and perhaps other HCN1-expressing cells.


Assuntos
Anticonvulsivantes/farmacologia , Córtex Cerebral/citologia , Canais Iônicos/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Propofol/farmacologia , Células Piramidais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Interações Medicamentosas , Estimulação Elétrica/métodos , Feminino , Antagonistas GABAérgicos/farmacologia , Glicinérgicos/farmacologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Ativação do Canal Iônico/efeitos da radiação , Canais Iônicos/classificação , Canais Iônicos/fisiologia , Canais Iônicos/efeitos da radiação , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Camundongos , Inibição Neural/fisiologia , Vias Neurais/citologia , Oócitos , Técnicas de Patch-Clamp/métodos , Canais de Potássio , Pirimidinas/farmacologia , Ratos , Estricnina/farmacologia , Tálamo/citologia , Fatores de Tempo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA