Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(34): 40478-40487, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37591494

RESUMO

Vapor-phase Beckmann rearrangement of cyclohexanone oxime (CHO) to ε-caprolactam (CPL) is still difficult to commercialize at the industrial scale due to its relatively low catalytic activity and poor lifetime. Herein, we synthesized a series of pure-silicon zeolites (including MFI, MEL, and -SVR) with three-dimensional 10-member-ring topolgies, diverse silanol status, and hierarchical porosity to investigate the synergistic effects of inner diffusivity and reactivity. S-1 zeolite of MFI-type topology with plentiful silanol nests exhibits a more preferable catalytic performance in terms of CHO conversion (99.7%) and CPL selectivity (89.7%), much higher than those of MEL- and -SVR-type zeolites mainly due to their diverse silanol distribution. With the construction of hierarchical porosity, S-1-P shows improved CPL selectivity of 94.1% owing to the enhanced diffusivity to shorten the retention time of the reactant and product molecules. The reaction mechanism and network have been further revealed by density functional theory (DFT) calculations and experimental designs, which indicate that silanol nests are major active sites due to their suitable interaction with CHO rather than terminal silanols. Particularly, the microenvironments of silanols can be modulated by alcohol solvents, ascribed to their different charge transfer and steric hindrance. Consequently, S-1-P shows superior CPL selectivity of 97.3% in ethonal solvents, which have higher adsorb energy of -0.627 eV with silanol nests than other alcohols. The present study not only provides a fundamental guide for the design of zeolite catalysts but also provides a reference for modulating the microenvironment of active sites according to the catalytic mechanism.

2.
ACS Omega ; 8(7): 7093-7101, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844522

RESUMO

The effect of reaction temperature and weight hourly space velocity (WHSV) on the reaction of 1-decene cracking to ethylene and propylene over H-ZSM-5 zeolite was investigated. Also, the thermal cracking reaction of 1-decene was studied by cracking over quartz sand as blank. It was observed that 1-decene undergoes a significant thermal cracking reaction above 600 °C over quartz sand. In the range of 500-750 °C, the conversion remained above 99% for 1-decene cracking over H-ZSM-5, and the catalytic cracking dominated even at 750 °C. With the increase in temperature, the yields of ethylene and propylene gradually increased, and the yields of alkanes and aromatics also increased. The low WHSV was favorable for the yield of light olefins. With the increase of the WHSV, the yields of ethylene and propylene decrease. However, at low WHSV, secondary reactions were accelerated, and the yields of alkanes and aromatics increased significantly. In addition, the possible main and side reaction routes of the 1-decene cracking reaction were proposed based on product distribution.

3.
J Colloid Interface Sci ; 633: 291-302, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36459934

RESUMO

Titanosilicate-1 zeolites (TS-1) as one of the most commonly used catalysts for alkene epoxidation, construction of hierarchical pores as well as elimination of anatase to promote mass transportation and avoid invalid decomposition of hydrogen peroxide are always desirable yet challenging goals. Here, a novel and unique Ti-based metal organic frameworks (MOFs)-induced synthetic strategy for fabricating anatase-free hierarchical TS-1 was first proposed. All the components of MOFs perform different functions: the uniformly distributed Ti nodes replace conventional tetrabutyl titanate (TBOT) to serve as sole Ti source for constructing zeolite crystal; the separated ligands can be embedded in the zeolite framework and act as template to in situ build hierarchical pore structure; the coordination interaction between Ti nodes and ligands can efficiently avoid the anatase generation by balancing the forming rates of Ti-OH and Si-OH. This synthetic strategy is of general applicability, and two different synthetic routes including traditional hydrothermal process and steam assisted crystallization (SAC) procedure are successfully adopted. The obtained hydrothermal TS-1 and SAC anatase-free samples all possess abundant intercrystalline mesopores of 20-50 nm and even macropores between 50 and 150 nm, improving the conversion over 25 % for 1­hexene epoxidation than TS-1 sample prepared by conventional route. The influences of the amount of Ti MOFs precursor and the crystallization process are studied in detail, and possible synthesis mechanisms are proposed. This MOFs-induced strategy might open up an avenue for the rational design of ideal and hierarchical zeolite to boost the catalytic efficiency.

4.
Molecules ; 27(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080393

RESUMO

EWT zeolite belongs to ultra-large pore zeolite with the 10MR and 21MR channels, which has good thermal stability, certain acid strength and good application prospects in petroleum refining and petrochemical reactions. However, EWT zeolite has fewer medium/strong acid sites, especially Brönsted acid sites, which makes it difficult to apply to acid-catalyzed reactions. The regulation of acid amount and distribution was achieved by boron and aluminum substitution into the siliceous framework of EWT. The physico-chemical properties of the samples were characterized by XRD, SEM, N2 adsorption-desorption, XRF, ICP, Py-IR, NH3-TPD and 11B & 27Al & 29Si MAS NMR. The results show that quantities of boron and aluminum elements can occupy the framework of [B,Al]-EWT to increase the density of medium and strong acid centers, with more acidity and Brönsted acid centers than EWT zeolite. In the reaction of glycerol with cyclohexanone, the conversion of the sample (U-90-08-10/U-90-H-HCl) is significantly higher than that of the EWT sample, approaching or exceeding the Beta zeolite. A catalytic activity study revealed a direct correlation between the Brönsted acidic site concentration and the activity of the catalyst. The U-90-08-10-H catalyst was also considerably stable in the catalytic process. This work shows, for the first time, that extra-large pore zeolites can be used in industrial acid-catalytic conversion processes with excellent catalytic performance.

5.
RSC Adv ; 12(9): 5135-5144, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35425581

RESUMO

A tungsten containing catalyst catalyzed oxidative cleavage of methyl oleate (MO) by employing H2O2 as an oxidant and is known as an efficient approach for preparing high value-added chemicals, however, the tungsten leaching problem remains unresolved. In this work, a binary catalyst consisting of tungsten oxide (WO3) and spongy titanosilicate (STS) zeolite is proposed for MO oxidative cleavage. The function of STS in this catalyst is investigated. On the one hand, STS converts MO to 9,10-epoxystearate (MES), which further forms nonyl aldehyde (NA) and methyl azelaaldehydate (MAA) with the catalysis of WO3. In this way, MO oxidation and hydrolysis that generates unwanted diol product 9,10-dihydroxystearate (MDS) decreases obviously. On the other hand, STS decomposes peroxide and promotes the conversion of soluble peroxotungstate to insoluble polytungstate. Meanwhile, these tungsten species are allowed to precipitate on its surface instead of remaining in the liquid phase owing to its relative large specific area. Therefore, tungsten leaching can be reduced from 37.0% to 1.2%. Due to the cooperation of WO3 and STS, 94.4% MO conversion and oxidative cleavage product selectivity of 63.1% are achieved, and the WO3-STS binary catalyst maintains excellent catalytic performance for 8 recycling reactions.

6.
J Colloid Interface Sci ; 607(Pt 2): 1836-1848, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34695736

RESUMO

The oxidation of mercaptans under mild and base-free conditions is of vital importance in terms of economy and environment for petroleum processing industry. Here, we developed a series of MOF-derived cobalt-based nitrogen-doped (N-doped) carbon (Co/CN-x) catalysts for the base-free catalytic oxidation of mercaptans. The optimal Co/CN-900 showed excellent catalytic activity for the oxidation of mercaptans under base-free conditions, yielding complete conversion of various mercaptans and > 99.0% selectivity of disulfides. The high performance can be contributed to the advantages of hierarchical pore structure for the diffusion and migration of substrates, self-carrying alkalinity for the formation of mercaptide anion, abundant active Co sites for catalytic oxidation of mercaptans as well as the synergistic effects between the Co nanoparticles (NPs) and N-doped carbon supports. Furthermore, a possible mechanism for base-free catalytic oxidation of mercaptans over Co/CN-x catalysts is proposed based on a set of control experiments and density functional theory (DFT) calculations.

7.
ACS Omega ; 6(27): 17173-17182, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34278104

RESUMO

The fast deactivation caused by serious formation of coke is a major challenge in catalytic isomerization of endo-tetrahydrodicyclopentadiene (endo-THDCPD) into exo-tetrahydrodicyclopentadiene (exo-THDCPD) over the HY zeolite. In order to suppress the coke formation for the isomerization process, the conventional HY zeolite was modified with Pt at 0.3 wt %. Then, the hydroisomerization of endo-THDCPD into exo-THDCPD was evaluated over a fixed-bed reactor. The catalytic stability of Pt/HY was greatly enhanced in comparison to that of the HY zeolite. The Pt/HY catalyst provided 97% endo-THDCPD conversion and 96% selectivity for exo-THDCPD without deactivation after 100 h. Moreover, the formation mechanism of coke on the HY zeolite during the isomerization process was proposed based on the results of the coke analysis. It was indicated that the coke was generated from the oligomerization and condensation of olefin species, which originated from the ß-scission reaction or hydride transfer reaction of intermediates. The lower coke formation over Pt/HY was attributed to the lower amount of coke precursors, which could be hydrogenated by activated H2 over Pt sites. Therefore, Pt on Pt/HY and H2 were two crucial factors in efficiently enhancing the catalytic stability of the HY zeolite for this isomerization reaction.

8.
RSC Adv ; 11(30): 18288-18298, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35480899

RESUMO

Ethylbenzene (EB) is an important bulk chemical intermediate. The vapor-phase process is considered to be more efficient than the liquid-phase process when using dilute ethylene (e.g. FCC or DCC off-gas) as the feed due to its high ethylene space velocity. However, realizing a balance between reducing the xylene formation and enhancing the EB selectivity is still a challenge due to the poor performance of ZSM-5 at low reaction temperature. This study concerns an IM-5 zeolite (IMF topology) modified by H2SiF6, with 89% ethylbenzene selectivity, 98.6% total EB + DEB selectivity and only 540 ppm of xylene at 330 °C. IM-5 zeolites with different Si/Al2 ratios (40-170) were prepared by H2SiF6 modification and their catalytic performance in vapor phase alkylation of benzene with ethylene was investigated. There was an obvious decrease in the acid sites and acid strength of IM-5 in the H2SiF6 treatment process, which led to a slight decrease in ethylbenzene selectivity and a significant decline in xylene yield. Under the conditions of complete ethylene conversion, the selectivity to EB + DEB increased from 96.1% to 98.6% in the parent I-40 and modified IM-5. Compared with ZSM-5 that has a similar acidity, the slightly bigger channel opening makes IM-5 more conductive to the formation and diffusion of DEB while xylene may present adverse effects. The 120 hour-lifetime test showed that IM-5 (I-110) has superior activity, equivalent stability, higher DEB selectivity and a much lower xylene selectivity in comparison with ZSM-5. The catalytic performance of the IM-5 zeolite in the vapor phase process provides a new choice for the production of ethylbenzene.

9.
RSC Adv ; 10(49): 29068-29076, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521147

RESUMO

Different amounts of SiO2 were added to the Al2O3 binders to investigate the binder effect on zeolite Y-based catalysts. The added SiO2 improved the mesopore volume and acidity of the catalysts. Characterization results showed that the catalysts' acid amount increased with increasing the SiO2 amount in the binder, which achieved maximum value when 12% SiO2 was added to the binder. The doped SiO2 in Al2O3 binders improved the Al2O3 phase transformation temperature, which is crucial for Al species to break out of the phase energy and migrate into the zeolite. The lifetime of catalyst Y-Al2O3-12SiO2 is 3.7 times higher than that of Y-Al2O3-0SiO2, and the selectivity of the target products simultaneously improved by 7 percentage point. This work should bring some inspiration to the design and application of zeolite-based catalysts.

10.
RSC Adv ; 8(66): 37842-37854, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35558623

RESUMO

Protective desilication of highly siliceous H-ZSM-5 was effectively realized by dissolution and recrystallization in tetraethylammonium hydroxide (TEAOH) solution. With better balance between dissolution of OH- and recrystallization of TEA+, intracrystalline mesopores could be generated by selective dissolution of Si by the drilling effects of TEAOH on the micropores, and then Si species in the mother liquor near the external surface could be recrystallized into ZSM-5 shell. With a significantly reduced diffusion length provided by the intracrystalline mesopores, TEAOH-treated samples exhibited longer lifetime and higher propylene selectivity than the parent H-ZSM-5 zeolite. The mediumly-treated T-16 h sample possessed the longest MTP lifetime of 140 h, 5.6 times that of the parent H-ZSM-5 zeolite. Furthermore, the coke content and adsorbed methyl benzene species on the T-16 h sample were heavier than those on the parent H-ZSM-5 sample, which were related to the intracrystalline mesopore structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA