Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 332: 111727, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37149228

RESUMO

Rerouting the starch biosynthesis pathway in maize can generate specialty types, like sweet corn and waxy corn, with a drastically increasing global demand. Hence, a fine-tuning of starch metabolism is relevant to create diverse maize cultivars for end-use applications. Here, we characterized a new maize brittle endosperm mutant, referred to as bt1774, which exhibited decreased starch content but a dramatic increase of soluble sugars at maturity. Both endosperm and embryo development was impaired in bt1774 relative to the wild-type (WT), with a prominently arrested basal endosperm transfer layer (BETL). Map-based cloning revealed that BRITTLE ENDOSPERM2 (Bt2), which encodes a small subunit of ADP-glucose pyrophosphorylase (AGPase), is the causal gene for bt1774. A MuA2 element was found to be inserted into intron 2 of Bt2, leading to a severe decrease of its expression, in bt1774. This is in line with the irregular and loosely packed starch granules in the mutant. Transcriptome of endosperm at grain filling stage identified 1,013 differentially expressed genes in bt1774, which were notably enriched in the BETL compartment, including ZmMRP1, Miniature1, MEG1, and BETLs. Gene expression of the canonical starch biosynthesis pathway was marginally disturbed in bt1774. Combined with the residual 60 % of starch in this nearly null mutant of Bt2, this data strongly suggests that an AGPase-independent pathway compensates for starch synthesis in the endosperm. Consistent with the BETL defects, zein accumulation was impaired in bt1774. Co-expression network analysis revealed that Bt2 probably has a role in intracellular signal transduction, besides starch synthesis. Altogether, we propose that Bt2 is likely involved in carbohydrate flux and balance, thus regulating both the BETL development and the starchy endosperm filling.


Assuntos
Endosperma , Zea mays , Endosperma/genética , Endosperma/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo
2.
New Phytol ; 214(4): 1563-1578, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28277611

RESUMO

Mitochondria are semi-autonomous organelles that are the powerhouse of the cells. Plant mitochondrial RNA editing guided by pentatricopeptide repeat (PPR) proteins is essential for energy production. We identify a maize defective kernel mutant dek36, which produces small and collapsed kernels, leading to embryos and/or seedlings lethality. Seed filling in dek36 is drastically impaired, in line with the defects observed in the organization of endosperm transfer tissue. Positional cloning reveals that DEK36, encoding a mitochondria-targeted E+ subgroup PPR protein, is required for mitochondrial RNA editing at atp4-59, nad7-383 and ccmFN -302, thus resulting in decreased activities of mitochondrial complex I, complex III and complex IV in dek36. Loss-of-function of its Arabidopsis ortholog At DEK36 causes arrested embryo and endosperm development, leading to embryo lethality. At_dek36 also has RNA editing defects in atp4, nad7, ccmFN1 and ccmFN2 , but at the nonconserved sites. Importantly, efficiency of all editing sites in ccmFN1 , ccmFN2 and rps12 is severely decreased in At_dek36, probably caused by the impairment of their RNA stabilization. These results suggest that the DEK36 orthologue pair are essential for embryo and endosperm development in both maize and Arabidopsis, but through divergent function in regulating RNA metabolism of their mitochondrial targets.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Plantas/metabolismo , Edição de RNA , Sementes/crescimento & desenvolvimento , Zea mays/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Teste de Complementação Genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Zea mays/crescimento & desenvolvimento
3.
J Exp Bot ; 67(22): 6323-6335, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27789589

RESUMO

Prolamins, the major cereal seed storage proteins, are sequestered and accumulated in the lumen of the endoplasmic reticulum (ER), and are directly assembled into protein bodies (PBs). The content and composition of prolamins are the key determinants for protein quality and texture-related traits of the grain. Concomitantly, the PB-inducing fusion system provides an efficient target to produce therapeutic and industrial products in plants. However, the proteome of the native PB and the detailed mechanisms underlying its formation still need to be determined. We developed a method to isolate highly purified and intact PBs from developing maize endosperm and conducted proteomic analysis of intact PBs of zein, a class of prolamine protein found in maize. We thus identified 1756 proteins, which fall into five major categories: metabolic pathways, response to stimulus, transport, development, and growth, as well as regulation. By comparing the proteomes of crude and enriched extractions of PBs, we found substantial evidence for the following conclusions: (i) ribosomes, ER membranes, and the cytoskeleton are tightly associated with zein PBs, which form the peripheral border; (ii) zein RNAs are probably transported and localized to the PB-ER subdomain; and (iii) ER chaperones are essential for zein folding, quality control, and assembly into PBs. We futher confirmed that OPAQUE1 (O1) cannot directly interact with FLOURY1 (FL1) in yeast, suggesting that the interaction between myosins XI and DUF593-containing proteins is isoform-specific. This study provides a proteomic roadmap for dissecting zein PB biogenesis and reveals an unexpected diversity and complexity of proteins in PBs.


Assuntos
Endosperma/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Zea mays/metabolismo , Retículo Endoplasmático/metabolismo , Endosperma/química , Redes e Vias Metabólicas , Proteômica , Ribossomos/metabolismo , Proteínas de Armazenamento de Sementes/análise , Proteínas de Armazenamento de Sementes/isolamento & purificação , Zeína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA