Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38470782

RESUMO

Cuprous oxide (Cu2O) has great potential in photodynamic therapy for implant-associated infections due to its good biocompatibility and photoelectric properties. Nevertheless, the rapid recombination of electrons and holes weakens its photodynamic antibacterial effect. In this work, a new nanosystem (Cu2O@rGO) with excellent photodynamic performance was designed via the in situ growth of Cu2O on reduced graphene oxide (rGO). Specifically, rGO with lower Fermi levels served as an electron trap to capture photoexcited electrons from Cu2O, thereby promoting electron-hole separation. More importantly, the surface of rGO could quickly transfer electrons from Cu2O owing to its excellent conductivity, thus efficiently suppressing the recombination of electron-hole pairs. Subsequently, the Cu2O@rGO nanoparticle was introduced into poly-L-lactic acid (PLLA) powder to prepare PLLA/Cu2O@rGO porous scaffolds through selective laser sintering. Photochemical analysis showed that the photocurrent of Cu2O@rGO increased by about two times after the incorporation of GO nanosheets, thus enhancing the efficiency of photogenerated charge carriers and promoting electron-hole separation. Moreover, the ROS production of the PLLA/Cu2O@rGO scaffold was significantly increased by about two times as compared with that of the PLLA/Cu2O scaffold. The antibacterial results showed that PLLA/Cu2O@rGO possessed antibacterial rates of 83.7% and 81.3% against Escherichia coli and Staphylococcus aureus, respectively. In summary, this work provides an effective strategy for combating implant-related infections.

2.
Bioact Mater ; 37: 51-71, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38515609

RESUMO

Intervertebral disc degeneration (IVDD) can be caused by aging, injury, and genetic factors. The pathological changes associated with IVDD include the excessive accumulation of reactive oxygen species (ROS), cellular pyroptosis, and extracellular matrix (ECM) degradation. There are currently no approved specific molecular therapies for IVDD. In this study, we developed a multifunctional and microenvironment-responsive metal-phenolic network release platform, termed TMP@Alg-PBA/PVA, which could treat (IL-1ß)-induced IVDD. The metal-phenolic network (TA-Mn-PVP, TMP) released from this platform targeted mitochondria to efficiently scavenge ROS and reduce ECM degradation. Pyroptosis was suppressed through the inhibition of the IL-17/ERK signaling pathway. These findings demonstrate the versatility of the platform. And in a rat model of IVDD, TMP@Alg-PBA/PVA exhibited excellent therapeutic effects by reducing the progression of the disease. TMP@Alg-PBA/PVA, therefore, presents clinical potential for the treatment of IVDD.

3.
Adv Healthc Mater ; : e2304595, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424663

RESUMO

The rapid multiplication of residual tumor cells and poor reconstruction quality of new bone are considered the major challenges in the postoperative treatment of osteosarcoma. It is a promising candidate for composite bone scaffold which combines photothermal therapy (PTT) and bone regeneration induction for the local treatment of osteosarcoma. However, it is inevitable to damage the normal tissues around the tumor due to the hyperthermia of PTT, while mild heat therapy shows a limited effect on antitumor treatment as the damage can be easily repaired by stress-induced heat shock proteins (HSP). This study reports a new type of single-atom Cu nanozyme-loaded bone scaffolds, which exhibit exceptional photothermal conversion properties as well as peroxidase and glutathione oxidase mimicking activities in vitro experiments. This leads to lipid peroxidation (LPO) and reactive oxygen species (ROS) upregulation, ultimately causing ferroptosis. The accumulation of LPO and ROS also contributes to HSP70 inactivation, maximizing PTT efficiency against tumors at an appropriate therapeutic temperature and minimizing the damage to surrounding normal tissues. Further, the bone scaffold promotes bone regeneration via a continuous release of bioactive ions (Ca2+ , P5+ , Si4+ , and Cu2+ ). The results of in vivo experiments reveal that scaffolds inhibit tumor growth and promote bone repair.

4.
Biomater Sci ; 12(2): 495-506, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38088401

RESUMO

Although barium titanate (BaTiO3) presented tremendous potential in achieving self-powered stimulation to accelerate bone repair, pervasive oxygen vacancies restricted the full play of its piezoelectric performance. Herein, BaTiO3-GO nanoparticles were synthesized by the in situ growth of BaTiO3 on graphene oxide (GO), and subsequently introduced into poly-L-lactic acid (PLLA) powders to prepare PLLA/BaTiO3-GO scaffolds by laser additive manufacturing. During the synthesis process, CO and C-OH in GO would respectively undergo cleavage and dehydrogenation at high temperature to form negatively charged oxygen groups, which were expected to occupy positively charged oxygen vacancies in BaTiO3 and thereby inhibit the formation of oxygen vacancies. Moreover, GO could be partially reduced to reduced graphene oxide, which could act as a conductive phase to facilitate polarization charge transfer, thus further improving the piezoelectric performance. The results showed that the oxygen peak at the specific electron binding energy in O 1s declined from 54.4% to 14.6% and the Ti3+ peak that was positively correlated with oxygen vacancies apparently weakened for BaTiO3-GO, illustrating that the introduced GO significantly decreased the oxygen vacancy. As a consequence, the piezoelectric current of PLLA/BaTiO3-GO increased from 80 to 147.3 nA compared with that of PLLA/BaTiO3. The enhanced piezoelectric current effectively accelerated cell differentiation by upregulating alkaline phosphatase expression, calcium salt deposition and calcium influx. This work provides a novel insight for the design of self-powered stimulation scaffolds for bone regeneration.


Assuntos
Cálcio , Grafite , Osso e Ossos , Grafite/farmacologia , Regeneração Óssea
5.
Mater Horiz ; 11(3): 590-625, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38018410

RESUMO

Bacterial infection represents a prevalent challenge during the bone repair process, often resulting in implant failure. However, the extensive use of antibiotics has limited local antibacterial effects at the infection site and is prone to side effects. In order to address the issue of bacterial infection during the transplantation of bone implants, four types of bone scaffold implants with long-term antimicrobial functionality have been constructed, including direct contact antimicrobial scaffold, dissolution-penetration antimicrobial scaffold, photocatalytic antimicrobial scaffold, and multimodal synergistic antimicrobial scaffold. The direct contact antimicrobial scaffold involves the physical penetration or disruption of bacterial cell membranes by the scaffold surface or hindrance of bacterial adhesion through surface charge, microstructure, and other factors. The dissolution-penetration antimicrobial scaffold releases antimicrobial substances from the scaffold's interior through degradation and other means to achieve local antimicrobial effects. The photocatalytic antimicrobial scaffold utilizes the absorption of light to generate reactive oxygen species (ROS) with enhanced chemical reactivity for antimicrobial activity. ROS can cause damage to bacterial cell membranes, deoxyribonucleic acid (DNA), proteins, and other components. The multimodal synergistic antimicrobial scaffold involves the combined use of multiple antimicrobial methods to achieve synergistic effects and effectively overcome the limitations of individual antimicrobial approaches. Additionally, the biocompatibility issues of the antimicrobial bone scaffold are also discussed, including in vitro cell adhesion, proliferation, and osteogenic differentiation, as well as in vivo bone repair and vascularization. Finally, the challenges and prospects of antimicrobial bone implants are summarized. The development of antimicrobial bone implants can provide effective solutions to bacterial infection issues in bone defect repair in the foreseeable future.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Humanos , Osteogênese , Alicerces Teciduais/química , Espécies Reativas de Oxigênio/farmacologia , Regeneração Óssea , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Anti-Infecciosos/farmacologia
6.
Nanomaterials (Basel) ; 13(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37947674

RESUMO

The integration of hydroxyapatite (HA) with broad-spectrum bactericidal nano-silver within biopolymer-based bone scaffolds not only promotes new bone growth, but also effectively prevents bacterial infections. However, there are problems such as a poor interface compatibility and easy agglomeration. In this project, zeolitic imidazolate frameworks (ZIF-8) were grown in situ on nano-HA to construct a core-shell structure, and silver was loaded into the ZIF-8 shell through ion exchange. Finally, the core-shell structure (HA@Ag) was composited with polylactic acid (PLLA) to prepare bone scaffolds. In this case, the metal zinc ions of ZIF-8 could form ionic bonds with the phosphate groups of HA by replacing calcium ions, and the imidazole ligands of ZIF-8 could form hydrogen bonds with the carboxyl groups of the PLLA, thus enhancing the interface compatibility between the biopolymers and ceramics. Additionally, the frame structure of MOFs enabled controlling the release of silver ions to achieve a long-term antibacterial performance. The test results showed that the HA@Ag nanoparticles endowed the scaffold with good antibacterial and osteogenic activity. Significantly, the HA@Ag naoaprticle exhibited a good interfacial compatibility with the PLLA matrix and could be relatively evenly dispersed within the matrix. Moreover, the HA@ZIF-8 also effectively enhanced the mechanical strength and degradation rate of the PLLA scaffold.

7.
J Adv Res ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38030127

RESUMO

INTRODUCTION: The electro-actuated shape memory polymer scaffold has gained increasing attentions on the utilization of minimally invasive surgery for bone defect repair, which requires to construct an efficient conductive network to accomplish electrical-to-thermal conversion from conductive fillers to the entire matrix evenly. OBJECTIVES: In this study, multiwall carbon nanotube (MWCNT) was convective self-assembled on the ZnO tetrapod (t-ZnO) template, where MWCNT was controlled to disperse uniformly and regulated to contact with each other effectively due to the immersion capillary force during the evaporation loss of the convective self-assembly process, leading to an interwoven layer on the t-ZnO surface. METHODS: The prepared t-ZnO@MWCNT assembly was embedded in the poly(L-lactic acid)/thermoplastic polyurethane (PLLA/TPU) scaffold fabricated via selective laser sintering to construct a 3D conductive MWCNT network for improving the electro-actuated shape memory properties. RESULTS: It was observed that the interconnected MWCNT formed a 3D conductive network in the matrix without significant aggregation, which boosted the electrical-to-thermal properties of the scaffold, and the scaffold containing t-ZnO@MWCNT assembly possessed better electro-actuated shape memory properties with shape fixity of 98.0% and shape recovery of 98.8%. CONCLUSION: The scaffold exhibited improved electro-actuated shape memory properties and mechanical properties and the osteogenic inductivity was promoted with the combined effect of t-ZnO and electrical stimulation.

8.
J Mater Chem B ; 11(45): 10896-10907, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37929928

RESUMO

Many traditional Chinese medicine monomers, such as naringin (NG), can regulate the local immune microenvironment to benefit osteogenesis. However, the rapid release of NG from scaffolds severely influences the osteogenesis-promoting effect. Herein, NG was loaded into mesoporous bioglass (MBG) to achieve sustained release through physical adsorption and the barrier role of mesoporous channels, then MBG loaded with NG was added to poly(L-lactic acid) (PLLA) to fabricate composite scaffolds by selective laser sintering (SLS) technology. The results showed that the NG-MBG/PLLA scaffolds could continuously and slowly release NG for 14 days compared with NG/PLLA scaffolds, and the cumulative release amount for the NG-MBG/PLLA scaffolds was 44.26%. In addition, the NG-MBG/PLLA scaffolds can promote the proliferation and osteogenesis differentiation of mouse bone marrow mesenchymal stem cells (mBMSCs). Meanwhile, the composite scaffolds decreased the reactive oxygen species (ROS) level of RAW264.7 under the stimulation of lipopolysaccharide (LPS) and significantly suppressed interleukin-6 (IL-6) and enhanced arginase-1 (Arg-1) protein expressions. Moreover, calcium nodule and alkaline phosphatase production of mBMSCs in a macrophage-conditioned medium for the NG-MBG/PLLA group also evidently increased compared with the PLLA and MBG/PLLA groups. These NG sustained-release composite scaffolds with osteo-immunomodulation function have great application prospects in the clinic.


Assuntos
Osteogênese , Polímeros , Camundongos , Animais , Preparações de Ação Retardada/farmacologia , Alicerces Teciduais
9.
Colloids Surf B Biointerfaces ; 230: 113512, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37595378

RESUMO

Graphitic carbon nitride (g-C3N4) had aroused tremendous attention in photodynamic antibacterial therapy due to its excellent energy band structure and appealing optical performance. Nevertheless, the superfast electron-hole recombination and dense biofilm formation abated its photodynamic antibacterial effect. To this end, a nanoheterojunction was synthesized via in-situ growing copper sulfide (CuS) on g-C3N4 (CuS@g-C3N4). On the one hand, CuS could form Fermi level difference with g-C3N4 to accelerate carrier transfer and thus facilitate electron-hole separation. On the other hand, CuS could respond near-infrared light to generate localized thermal to disrupt biofilm. Then the CuS@g-C3N4 nanoparticle was introduced into the poly-l-lactide (PLLA) scaffold. The photoelectrochemistry results demonstrated that the electron-hole separation efficiency was apparently enhanced and thereby brought an approximate sevenfold increase in reactive oxygen species (ROS) production. The thermal imaging indicated that the scaffold possesses a superior photothermal effect, which effectively eradicated the biofilm by disrupting its extracellular DNA and thereby facilitated to the entry of ROS. The entered ROS could effectively kill the bacteria by causing protein, K+, and nucleic acid leakage and glutathione consumption. As a consequence, the scaffold displayed an antibacterial rate of 97.2% and 98.5% against E. coli and S. aureus, respectively.


Assuntos
Escherichia coli , Staphylococcus aureus , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Biofilmes
10.
Colloids Surf B Biointerfaces ; 225: 113251, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931045

RESUMO

Ascorbic acid (AA) is a promising antitumor agent, yet its autooxidation is too slow which constrains the further application. Fortunately, the autoxidation process can be accelerated by transition metal catalysts, especially Fe3+ ions. In this study, AA was loaded to Fe-doped mesoporous silica (designated as AA@Fe-SiO2), which was introduced into poly-L-lactic acid (PLLA) and then prepared into a scaffold. Mechanistically, AA@Fe-SiO2 degraded in acidic tumor microenvironment because excessive H+ substituted Fe atoms in the iron silicate framework, releasing Fe3+ and AA. The Fe3+ boosted the pro-oxidation reaction of AA, generating numerous hydrogen peroxide (H2O2) and Fe2+. Then, Fe2+ reacted with H2O2 to initiate Fenton reactions favoring hydroxyl radical generation, triggering oxidative damage on tumor cells to implement tumor-specific therapy. Results showed that the release amount of AA in acidic solution was about 3 times higher than that in neutral solution, which was attributed to the pH-dependency of the degradation of AA@Fe-SiO2 in scaffold. Furthermore, the scaffold generated numerous ascorbate radical intermediate and increased the H2O2 concentration by 120.2%, demonstrating that Fe3+ remarkably accelerated the oxidation rate of AA. Cell experimental results showed that the scaffold caused massive apoptosis of tumor cells, while no obvious cytotoxicity to normal cells, confirming the antitumor specificity of scaffold. This work paves a promising way to construct a biodegradable and catalytic scaffold, featuring effective tumor-specific therapy.


Assuntos
Ácido Ascórbico , Dióxido de Silício , Peróxido de Hidrogênio/metabolismo , Oxirredução , Ferro , Ácidos
11.
J Adv Res ; 54: 239-249, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36706987

RESUMO

INTRODUCTION: Scaffolds loaded with antibacterial agents and osteogenic drugs are considered essential tools for repairing bone defects caused by osteomyelitis. However, the simultaneous release of two drugs leads to premature osteogenesis and subsequent sequestrum formation in the pathological situation of unthorough antibiosis. OBJECTIVES: In this study, a spatiotemporal drug-release polydopamine-functionalized mesoporous silicon nanoparticle (MSN) core/shell drug delivery system loaded with antibacterial silver (Ag) nanoparticles and osteogenic dexamethasone (Dex) was constructed and introduced into a poly-l-lactic acid (PLLA) scaffold for osteomyelitis therapy. METHODS: MSNs formed the inner core and were loaded with Dex through electrostatic adsorption (MSNs@Dex), and then polydopamine was used to seal the core through the self-assembly of dopamine as the outer shell (pMSNs@Dex). Ag nanoparticles were embedded in the polydopamine shell via an in situ growth technique. Finally, the Ag-pMSNs@Dex nanoparticles were introduced into PLLA scaffolds (Ag-pMSNs@Dex/PLLA) constructed by selective laser sintering (SLS). RESULTS: The Ag-pMSNs@Dex/PLLA scaffold released Ag+ at the 12th hour, followed by the release of Dex starting on the fifth day. The experiments verified that the scaffold had excellent antibacterial performance against Escherichia coli and Staphylococcus aureus. Moreover, the scaffold significantly enhanced the osteogenic differentiation of mouse bone marrow mesenchymal stem cells. CONCLUSION: The findings suggested that this spatiotemporal drug release scaffold had promising potential for osteomyelitis therapy.


Assuntos
Nanopartículas Metálicas , Osteogênese , Camundongos , Animais , Dexametasona/farmacologia , Alicerces Teciduais , Liberação Controlada de Fármacos , Antibiose , Células Cultivadas , Prata/farmacologia , Regeneração Óssea , Antibacterianos/farmacologia
12.
J Colloid Interface Sci ; 632(Pt A): 95-107, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410298

RESUMO

The movement towards the clinical application of iron (Fe) has been hindered by the slow degradation rate in physiological environments. Herein, manganese dioxide (MnO2) particles were compounded with titanium dioxide (TiO2) particles by mechanical ball milling, and then the mixed powders were incorporated into Fe and fabricated into an implant using selective laser melting. On the one hand, MnO2 had a higher work function (5.21 eV) than Fe (4.48 eV), which inclined electrons to transfer from Fe to MnO2 to accelerate the anode reaction. On the other hand, MnO2 catalysed the oxygen reduction reaction (ORR) through a four-step proton-electron-coupled reaction, which caused more oxygen to flow into the sample to improve the cathode performance. Besides, anatase TiO2 with high conductivity was compounded with MnO2 to construct a composite cathode, which facilitated electron transport from the cathode to the electrolyte, further consuming electrons and promoting cathode reaction. Results showed that Fe-MnO2-TiO2 had a high limiting current density of 5.32 mA·cm-2 and a large half-wave potential of -767.4 mV, indicating an enhanced ORR activity. More significantly, Fe-MnO2-TiO2 had a higher average electron transfer number (2.9) than Fe-MnO2 (2.5), demonstrating a faster electronic consumption reaction and higher cathode performance. In addition, the Fe-MnO2-TiO2 also exhibited fast instantaneous and long-term degradation rates (0.33 ± 0.03 and 0.19 ± 0.02 mm/year), suggesting a high anode dissolution rate. In conclusion, introducing the cathode with high work function and ORR activity provides novel pathways for accelerating the degradation rate of Fe-based implants.


Assuntos
Compostos de Manganês , Óxidos , Elétrons , Ferro , Eletrodos , Oxigênio
13.
ACS Biomater Sci Eng ; 9(1): 153-164, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36571764

RESUMO

Fe has immense potential for biodegradable orthopedic applications, but it degrades slowly in the physiological environment. Inducing galvanic couple by alloying Cu to Fe using ball milling is a promising approach. However, the ductile nature of Cu leads to the cold welding of a large amount of Cu powder during ball milling, which makes it difficult to disperse uniformly in the Fe matrix. Here, a Fe-CuO implant with highly dispersed Cu particles in the matrix was developed by shift-speed ball milling and selective laser melting. Specifically, copper oxide (CuO) particles were selected as precursors and dispersed in Fe powders by ball milling since they were brittle and would not be cold-welded during ball milling. After further milling in higher energy, it was found that CuO particles reacted with Fe and generated Cu particles through a stress-activated redox reaction. Subsequently, the obtained powders were prepared into a Fe-CuO implant using selective laser melting. Microstructure examination revealed that the Cu phases in the implant were dispersed evenly in the Fe matrix, which was considered to establish a large number of galvanic couples and aggravated the galvanic corrosion tendency. Electrochemical tests indicated that the implant had improved performance in degradation behavior in terms of high corrosion current density (22.4 µA/cm2), low corrosion resistance (1319 Ω cm2), and good degradation stability. In addition, it presented antibacterial effects against Escherichia coli and Staphylococcus aureus by diffusion mechanisms with killing rates of 90.7 and 96.7%, respectively, as well as good cytocompatibility.


Assuntos
Próteses e Implantes , Estresse Mecânico , Corrosão , Oxirredução
14.
J Adv Res ; 48: 175-190, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36087925

RESUMO

INTRODUCTION: The aggregation of graphene oxide (GO) is considered as main challenge, although GO possesses excellent mechanical properties which arouses widespread attention as reinforcement for polymers. OBJECTIVES: In this study, silicon dioxide (SiO2) nanoparticles were decorated onto surface of GO nanosheets through in situ growth method for promoting dispersion of GO in poly(l-lactic acid) (PLLA) bone scaffold. METHODS: Hydroxyl and carboxyl functional groups of GO provided sites for SiO2 nucleation, and SiO2 grew with hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) and finally formed nanoparticles onto surface of GO with covalent bonds. Then, the GO@ SiO2 nanocomposite was blended with PLLA for the fabrication of bone scaffold by selective laser sintering (SLS). RESULT: The results indicated that the obtained SiO2 were distributed relatively uniformly on surface of GO under TEOS concentration of 0.10 mol/L (GO@SiO2-10), and the covering of SiO2 on GO could increase interlayer distance of GO nanosheets from 0.799 nm to 0.894 nm, thus reducing van der Waals forces between GO nanosheets and facilitating the dispersion. Tensile and compressive strength of scaffold containing GO@SiO2 hybrids were significantly enhanced, especially for the scaffold containing GO@SiO2-10 hybrids with enhancement of 30.95 % in tensile strength and 66.33 % in compressive strength compared with the scaffold containing GO. Additionally, cell adhesion and fluorescence experiments demonstrated excellent cytocompatibility of the scaffold. CONCLUSIONS: The good dispersion of GO@SiO2 enhances the mechanical properties and cytocompatibility of scaffold, making it a potential candidate for bone tissue engineering applications.


Assuntos
Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Poliésteres/química , Nanopartículas/química
15.
Colloids Surf B Biointerfaces ; 220: 112890, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36242940

RESUMO

Electrical stimulation was restrained by an external power supply and wires, despite its ability to promote nerve cell growth. Bismuth sulfide (Bi2S3) offered a novel prospect for achieving wireless electrical stimulation due to its photoelectric effect. Herein, silver nanoparticles (Ag NPs) were in-situ grown on Bi2S3 surface (Ag/Bi2S3) and then mixed with poly-L-lactic acid (PLLA) powders to fabricate PLLA-Ag/Bi2S3 conduits. On the one hand, Bi2S3 would generate photocurrent under light excitation, forming a wireless electrical stimulation. On the other hand, Ag NPs would form localized electrical fields under light excitation to inhibit rapid electron-hole recombination of Bi2S3. Moreover, Ag NPs would act as electron mediators to accelerate electron transfer, further elevating photocurrent. Electrochemical tests and FDTD simulations revealed the localized electrical fields generated by Ag NPs acted on Bi2S3, resulting in a boosted electron-hole separation evidenced by a reduction in photoluminescence intensity. EIS measurements demonstrated a faster electron transfer occurred on Ag/Bi2S3. As a result, the photocurrent of PLLA-Ag/Bi2S3 increased from 0.26 to 1.03 µA as compared with PLLA-Bi2S3. The enhanced photocurrent effectively promoted cell differentiation by up-regulating Ca2+ influx and nerve growth-related protein SYN1 expression. This work suggested a promising countermeasure in the design of photocurrent stimulation conduits for nerve repair.


Assuntos
Nanopartículas Metálicas , Prata/farmacologia , Neurônios , Estimulação Elétrica
16.
Int J Bioprint ; 8(3): 574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105126

RESUMO

Magnesium (Mg) degrades too fast in human body, which limits its orthopedic application. Single-phase Mg-based supersaturated solid solution is expected to possess high corrosion resistance. In this work, rare earth scandium (Sc) was used as alloying element to prepare Mg(Sc) solid solution powder by mechanical alloying (MA) and then shaped into implant using selective laser melting (SLM). MA utilizes powerful mechanical force to introduce numerous lattice defects, which promotes the dissolution of Sc in Mg matrix and forms supersaturated solid solution particles. Subsequently, SLM with fast heating and cooling rate maintains the original supersaturated solid solution structure. Immersion tests revealed that high Sc content significantly enhanced the corrosion resistance of Mg matrix because of the formation of protective corrosion product film, which was also proved by the electrochemical impedance spectroscopy measurements. Thereby, Mg(Sc) alloy showed a relatively low degradation rate of 0.61 mm/year. In addition, cell tests showed that the Mg(Sc) exhibited favorable biocompatibility and was suitable for medical application.

17.
Biomater Res ; 26(1): 38, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933507

RESUMO

BACKGROUND: Fe3O4 nanoparticles are highly desired for constructing endogenous magnetic microenvironment in scaffold to accelerate bone regeneration due to their superior magnetism. However, their random arrangement easily leads to mutual consumption of magnetic poles, thereby weakening the magnetic stimulation effect. METHODS: In this study, magnetic nanochains are synthesized by magnetic-field-guided interface co-assembly of Fe3O4 nanoparticles. In detail, multiple Fe3O4 nanoparticles are aligned along the direction of magnetic force lines and are connected in series to form nanochain structures under an external magnetic field. Subsequently, the nanochain structures are covered and fixed by depositing a thin layer of silica (SiO2), and consequently forming linear magnetic nanochains (Fe3O4@SiO2). The Fe3O4@SiO2 nanochains are then incorporated into poly l-lactic acid (PLLA) scaffold prepared by selective laser sintering technology. RESULTS: The results show that the Fe3O4@SiO2 nanochains with unique core-shell structure are successfully constructed. Meanwhile, the orderly assembly of nanoparticles in the Fe3O4@SiO2 nanochains enable to form magnetic energy coupling and obtain a highly magnetic micro-field. The in vitro tests indicate that the PLLA/Fe3O4@SiO2 scaffolds exhibit superior capacity in enhancing cell activity, improving osteogenesis-related gene expressions, and inducing cell mineralization compared with PLLA and PLLA/Fe3O4 scaffolds. CONCLUSION: In short, the Fe3O4@SiO2 nanochains endow scaffolds with good magnetism and cytocompatibility, which have great potential in accelerating bone repair.

18.
Colloids Surf B Biointerfaces ; 217: 112668, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35810612

RESUMO

Nano-hydroxylapatite (nano-HAP)/polycaprolactone (PCL) composite scaffold is proved to possess great potential for bone tissue engineering application since the biocompatibility of PCL and the osteoinduction ability of nano-HAP. However, the interfacial bonding between nano-HAP and PCL is weak by reason of the difference in thermodynamic properties. Herein, nano-HAP was modified by polydopamine (PDA) and then added to the PCL matrix to enhance their interface bonding in bone scaffold manufactured by selective laser sintering (SLS). The results indicated that PDA acted as an interfacial molecular bridge between PCL and nano-HAP. On one hand, the amino groups of PDA formed hydrogen bonding with the hydroxyl groups of nano-HAP, and on the other hand, the catechol groups of PDA formed hydrogen bonding with the ester groups of PCL. Compared with the HAP/PCL scaffolds, the tensile and compressive strength of the P-HAP/PCL scaffolds loading 12 wt% P-HAP were increased by 10% and 16%, respectively. Meanwhile, the scaffold possessed great bioactivity and cytocompatibility that could accelerate the formation of apatite layers and promote the cell adhesion, proliferation and differentiation.


Assuntos
Durapatita , Alicerces Teciduais , Durapatita/farmacologia , Indóis , Poliésteres/farmacologia , Polímeros , Engenharia Tecidual/métodos
19.
Stem Cell Res Ther ; 13(1): 339, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883163

RESUMO

BACKGROUND: The differentiation of human induced pluripotent stem cells (iPSCs) into oocytes, which involves the transformation from mitosis to meiosis, has been a hotspot of biological research for many years and represents a desirable experimental model and potential strategy for treating infertility. At present, studies have shown that most cells stagnate in the oogonium stage after differentiation into primordial germ cells (PGCs) from human iPSCs. METHODS: iPSCs carrying a SYCP3-mkate2 knock-in reporter were generated by the CRISPR/Cas9 strategy to monitor meiosis status during induced differentiation from iPSCs into oocytes. These induced PGCs/oogonia were activated by small molecules from the Wnt signaling pathway and then cocultured with reconstructed human ovarian nests in vivo for further development. RESULTS: First, human PGCs and oogonia were efficiently induced from iPSCs. Second, induced dormant PGCs resumed meiosis and then differentiated into primary oocytes through the in vitro activation of the Wnt signaling pathway. Finally, a new coculture system involving the reconstruction of ovarian nests in vitro could facilitate the differentiation of oocytes. CONCLUSIONS: Human PGCs/oogonia induced from iPSCs can be activated and used to resume meiosis by molecules of the Wnt signaling pathway. The coculture of activated PGCs and reconstruction of ovarian nests facilitated differentiation into primary oocytes and the generation of haploid human oocytes in vivo. These findings established a new strategy for germline competence in primary oocytes and provided a keystone for human gametogenesis in vitro and in vivo.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular/fisiologia , Feminino , Células Germinativas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Meiose , Oócitos
20.
J Adv Res ; 38: 143-155, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35572396

RESUMO

Introduction: Nano-SiC has attracted great attention as ceramic reinforcement in metal matrix composites, but the weak interface bonding between them remains a bottleneck for efficient strengthening. Objective: In this study, pre-oxidation treatments and selective laser melting (SLM) were employed to prepare Zn/nano-SiC biocomposites with strengthened interface bonding via in situ reaction. Methods: Nano-SiC and Zn powders were pre-oxidized respectively, and then used to prepare Zn/nano-SiC biocomposites via SLM. The powder microstructure, and the interface characteristics and mechanical properties of the biocomposites were investigated. The degradation properties and cell response were analyzed to evaluate their feasibility for orthopedic applications. Results: The results indicated that the pre-oxidation treatments generated a uniform oxide layer on the surface of both nano-SiC and Zn particles and the thickness of the oxide layer increased with pre-oxidation temperature. During the SLM process, the oxide layers not only improved the metal-ceramic wettability by reducing interface energy, but also induced in situ reaction to form chemical bonding between the Zn matrix and nano-SiC, thereby improving the interface bonding. Consequently, the Zn biocomposite reinforced by nano-SiC with a pre-oxidation temperature of 1000 °C (ZS1000 biocomposite) exhibited more transgranular fracture and significantly enhanced compressive yield strength of 171.5 MPa, which was 31.6% higher than that of the Zn biocomposite reinforced by nano-SiC without pre-oxidation. Moreover, the ZS1000 biocomposite presented slightly accelerated degradation which might be ascribed to the facilitated electron transfer by the interface product (Zn2SiO4). In addition, the ZS1000 biocomposite also showed appropriate biocompatibility for MG-63 cell adhesion, growth, and proliferation. Conclusion: This study shows the potential practical applicability for the preparation of Zn-based biocomposites with strong interface bonding and mechanical properties for orthopedic applications.


Assuntos
Cerâmica , Lasers , Oxirredução , Óxidos , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA