Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 435: 115848, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34958783

RESUMO

Organic anion transporting polypeptide 1B1 (OATP1B1), which is specifically expressed at the basolateral membrane of human hepatocytes, is well recognized as the key determinant in the pharmacokinetics of a wide variety of drugs and considered as an important drug-drug interaction (DDI) site. Triptergium wilfordii Hook. f. (TWHF) is a traditional Chinese medicine that has a long history in treating diseases and more pharmacological effects were demonstrated recently. Components of TWHF mainly belong to the groups of alkaloids, diterpenoids, and triterpenoids. However, whether TWHF constituents are involved in herb-drug interaction (HDI) remains largely unknown. In the present study, we investigated the effect of four major components of TWHF, i.e. Triptolide (TPL), Celastrol (CL), and two alkaloids Wilforine (WFR) and Wilforgine (WFG) on the function of OATP1B1. It was found that co-incubation of these compounds greatly inhibited the uptake function of OATP1B1, with WFG (IC50 = 3.63 ± 0.61 µM) and WFR (IC50 = 3.91 ± 0.30 µM) showing higher inhibitory potency than TPL (IC50 = 184 ± 36 µM) and CL (IC50 = 448 ± 81 µM). Kinetic analysis revealed that co-incubation of WFG or WFR led to the reduction of both Km and Vmax of the DCF uptake. On the other hand, pre-incubation of WFG or WFR increased Km value of OATP1B1; while CL affected both Km and Vmax. In conclusion, co- and pre-incubation of the tested TWHF components inhibited OATP1B1 activity in different manners. Although co-incubation of WFG and WFR did not seem to directly compete with the substrates, pre-incubation of these alkaloids may alter the substrate-transporter interaction.


Assuntos
Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Extratos Vegetais/farmacologia , Tripterygium/química , Alcaloides/farmacologia , Células HEK293 , Humanos , Cinética , Lactonas/farmacologia , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Medicina Tradicional Chinesa , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Piridinas/farmacologia , Terpenos/farmacologia
2.
Adv Sci (Weinh) ; 7(8): 1902701, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32328415

RESUMO

Physical or chemical crosslinking of polymeric micelles has emerged as a straightforward approach to overcome the intrinsic instability of assemblies. However, the crosslinking process may compromise the responsivity of nanosystems and result in inefficient release of payloads. To address this dilemma, a crosslinking induced reassembly (CIRA) strategy is reported here to simultaneously increase the kinetic and thermodynamic stability and redox-responsivity of polymeric micelles. It is found that the click crosslinking of a model multiblock polyurethane at the micellar interface induces microphase separation between the soft and hard segments. The aggregation of hard domains gathers liable disulfide linkages around the interlayer of micelles, which could facilitate the attack of reducing agents and act as an intelligent on-off switch for high stability and triggered release. As a result, the CIRA approach enables an enhanced tumor targeting, improved biodistribution and excellent therapeutic efficacy in vivo. This work provides a facile and versatile platform for controlled delivery applications.

3.
Biomaterials ; 145: 138-153, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28863308

RESUMO

Targeted delivery of therapeutics and diagnostics using nanotechnology holds great promise to minimize the side effects of conventional chemotherapy and enable specific and real-time detection of diseases. To realize this goal, we report a clickable and imageable nanovehicle assembled from multiblock polyurethanes (MPUs). The soft segments of the polymers are based on detachable poly(ethylene glycol) (PEG) and degradable poly(ε-caprolactone) (PCL), and the hard segments are constructed from lysine- and cystine-derivatives bearing reduction-responsive disulfide linkages and click-active alkynyl moieties, allowing for post-conjugation of targeting ligands via a click chemistry. It was found that the cleavage of PEG corona bearing a pH-sensitive benzoic-imine linkage (BPEG) could act as an on-off switch, which is capable of activating the clicked targeting ligands under extracellular acidic condition, followed by triggering the core degradation and payload release within tumor cells. In combination with superparamagnetic iron oxide nanoparticles (SPION) clustered within the micellar core, the MPUs exhibit excellent magnetic resonance imaging (MRI) contrast effects and T2 relaxation in vitro, as well as magnetically guided MR imaging and multimodal targeting of therapeutics to tumor precisely, leading to significant inhibition of cancer with minimal side effect. This work provides a safe and versatile platform for the further development of smart theranostic systems for potential magnetically-targeted and imaging-guided personalized medicine.


Assuntos
Química Click/métodos , Imageamento por Ressonância Magnética , Micelas , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Polietilenoglicóis/química , Polímeros/química , Nanomedicina Teranóstica , Animais , Sistemas de Liberação de Medicamentos , Endocitose , Feminino , Ácido Fólico/farmacologia , Ácido Fólico/uso terapêutico , Células HeLa , Humanos , Camundongos Nus , Tamanho da Partícula , Poliuretanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA