Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Crohns Colitis ; 17(6): 919-932, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-36694402

RESUMO

Biomarkers to guide clinical decision making at diagnosis of inflammatory bowel disease [IBD] are urgently needed. We investigated a composite serum N-glycomic biomarker to predict future disease course in a discovery cohort of 244 newly diagnosed IBD patients. In all, 47 individual glycan peaks were analysed using ultra-high performance liquid chromatography, identifying 105 glycoforms from which 24 derived glycan traits were calculated. Multivariable logistic regression was performed to determine associations of derived glycan traits with disease. Cox proportional hazard models were used to predict treatment escalation from first-line treatment to biologics or surgery (hazard ratio [HR] 25.9, p = 1.1 × 10-12; 95% confidence interval [CI], 8.52-78.78). Application to an independent replication cohort of 54 IBD patients yielded an HR of 5.1 [p = 1.1 × 10-5; 95% CI, 2.54-10.1]. These data demonstrate the prognostic capacity of serum N-glycan biomarkers and represent a step towards personalised medicine in IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Colite Ulcerativa/diagnóstico , Doença de Crohn/complicações , Glicômica , Doenças Inflamatórias Intestinais/complicações , Biomarcadores , Polissacarídeos
2.
Mol Cell Proteomics ; 18(1): 3-15, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30242110

RESUMO

N-Glycosylation is a fundamentally important protein modification with a major impact on glycoprotein characteristics such as serum half-life and receptor interaction. More than half of the proteins in human serum are glycosylated, and the relative abundances of protein glycoforms often reflect alterations in health and disease. Several analytical methods are currently capable of analyzing the total serum N-glycosylation in a high-throughput manner.Here we evaluate and compare the performance of three high-throughput released N-glycome analysis methods. Included were hydrophilic-interaction ultra-high-performance liquid chromatography with fluorescence detection (HILIC-UHPLC-FLD) with 2-aminobenzamide labeling of the glycans, multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) with 8-aminopyrene-1,3,6-trisulfonic acid labeling, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with linkage-specific sialic acid esterification. All methods assessed the same panel of serum samples, which were obtained at multiple time points during the pregnancies and postpartum periods of healthy women and patients with rheumatoid arthritis (RA). We compared the analytical methods on their technical performance as well as on their ability to describe serum protein N-glycosylation changes throughout pregnancy, with RA, and with RA disease activity.Overall, the methods proved to be similar in their detection and relative quantification of serum protein N-glycosylation. However, the non-MS methods showed superior repeatability over MALDI-TOF-MS and allowed the best structural separation of low-complexity N-glycans. MALDI-TOF-MS achieved the highest throughput and provided compositional information on higher-complexity N-glycans. Consequentially, MALDI-TOF-MS could establish the linkage-specific sialylation differences within pregnancy and RA, whereas HILIC-UHPLC-FLD and xCGE-LIF demonstrated differences in α1,3- and α1,6-branch galactosylation. While the combination of methods proved to be the most beneficial for the analysis of total serum protein N-glycosylation, informed method choices can be made for the glycosylation analysis of single proteins or samples of varying complexity.


Assuntos
Artrite Reumatoide/metabolismo , Proteínas Sanguíneas/análise , Glicômica/métodos , Complicações na Gravidez/metabolismo , Adulto , Proteínas Sanguíneas/química , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar , Feminino , Glicosilação , Humanos , Gravidez , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Glycoconj J ; 35(3): 311-321, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29909447

RESUMO

Glycosylation is considered one of the most complex and structurally diverse post-translational modifications of proteins. Glycans play important roles in many biological processes such as protein folding, regulation of protein stability, solubility and serum half-life. One of the ways to study glycosylation is systematic structural characterizations of protein glycosylation utilizing glycomics methodology based around mass spectrometry (MS). The most prevalent bottleneck stages for glycomic analyses is laborious sample preparation steps. Therefore, in this study, we aim to improve sample preparations by automation. We recently demonstrated the successful application of an automated high-throughput (HT), glycan permethylation protocol based on 96-well microplates, in the analysis of purified glycoproteins. Therefore, we wanted to test if these developed HT methodologies could be applied to more complex biological starting materials. Our automated 96-well-plate based permethylation method showed very comparable results with established glycomic methodology. Very similar glycomic profiles were obtained for complex glycoprotein/protein mixtures derived from heterogeneous mouse tissues. Automated N-glycan release, enrichment and automated permethylation of samples proved to be convenient, robust and reliable. Therefore we conclude that these automated procedures are a step forward towards the development of a fully automated, fast and reliable glycomic profiling system for analysis of complex biological materials.


Assuntos
Automação Laboratorial/métodos , Glicômica/métodos , Polissacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Fracionamento Celular/métodos , Rim/química , Fígado/química , Camundongos , Camundongos Endogâmicos C57BL
4.
Anal Chem ; 88(17): 8562-9, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27479043

RESUMO

Monitoring glycoprotein therapeutics for changes in glycosylation throughout the drug's life cycle is vital, as glycans significantly modulate the stability, biological activity, serum half-life, safety, and immunogenicity. Biopharma companies are increasingly adopting Quality by Design (QbD) frameworks for measuring, optimizing, and controlling drug glycosylation. Permethylation of glycans prior to analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a valuable tool for glycan characterization and for screening of large numbers of samples in QbD drug realization. However, the existing protocols for manual permethylation and liquid-liquid extraction (LLE) steps are labor intensive and are thus not practical for high-throughput (HT) studies. Here we present a glycan permethylation protocol, based on 96-well microplates, that has been developed into a kit suitable for HT work. The workflow is largely automated using a liquid handling robot and includes N-glycan release, enrichment of N-glycans, permethylation, and LLE. The kit has been validated according to industry analytical performance guidelines and applied to characterize biopharmaceutical samples, including IgG4 monoclonal antibodies (mAbs) and recombinant human erythropoietin (rhEPO). The HT permethylation enabled glycan characterization and relative quantitation with minimal side reactions: the MALDI-TOF-MS profiles obtained were in good agreement with hydrophilic liquid interaction chromatography (HILIC) and ultrahigh performance liquid chromatography (UHPLC) data. Automated permethylation and extraction of 96 glycan samples was achieved in less than 5 h and automated data acquisition on MALDI-TOF-MS took on average less than 1 min per sample. This automated and HT glycan preparation and permethylation showed to be convenient, fast, and reliable and can be applied for drug glycan profiling and clinical glycan biomarker studies.


Assuntos
Anticorpos Monoclonais/análise , Automação , Produtos Biológicos/análise , Eritropoetina/análise , Ensaios de Triagem em Larga Escala , Imunoglobulina G/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Glicosilação , Metilação , Proteínas Recombinantes/análise
6.
PLoS One ; 10(4): e0123028, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25831126

RESUMO

INTRODUCTION: Serum N-glycans have been identified as putative biomarkers for numerous diseases. The impact of different serum sample tubes and processing methods on N-glycan analysis has received relatively little attention. This study aimed to determine the effect of different sample tubes and processing methods on the whole serum N-glycan profile in both health and disease. A secondary objective was to describe a robot automated N-glycan release, labeling and cleanup process for use in a biomarker discovery system. METHODS: 25 patients with active and quiescent inflammatory bowel disease and controls had three different serum sample tubes taken at the same draw. Two different processing methods were used for three types of tube (with and without gel-separation medium). Samples were randomised and processed in a blinded fashion. Whole serum N-glycan release, 2-aminobenzamide labeling and cleanup was automated using a Hamilton Microlab STARlet Liquid Handling robot. Samples were analysed using a hydrophilic interaction liquid chromatography/ethylene bridged hybrid(BEH) column on an ultra-high performance liquid chromatography instrument. Data were analysed quantitatively by pairwise correlation and hierarchical clustering using the area under each chromatogram peak. Qualitatively, a blinded assessor attempted to match chromatograms to each individual. RESULTS: There was small intra-individual variation in serum N-glycan profiles from samples collected using different sample processing methods. Intra-individual correlation coefficients were between 0.99 and 1. Unsupervised hierarchical clustering and principal coordinate analyses accurately matched samples from the same individual. Qualitative analysis demonstrated good chromatogram overlay and a blinded assessor was able to accurately match individuals based on chromatogram profile, regardless of disease status. CONCLUSIONS: The three different serum sample tubes processed using the described methods cause minimal inter-individual variation in serum whole N-glycan profile when processed using an automated workstream. This has important implications for N-glycan biomarker discovery studies using different serum processing standard operating procedures.


Assuntos
Coleta de Amostras Sanguíneas/instrumentação , Glicoproteínas/sangue , Polissacarídeos/sangue , Adulto , Biomarcadores/sangue , Análise Química do Sangue , Proteínas Sanguíneas/isolamento & purificação , Proteínas Sanguíneas/metabolismo , Cromatografia Líquida de Alta Pressão , Feminino , Glicoproteínas/isolamento & purificação , Humanos , Doenças Inflamatórias Intestinais/sangue , Masculino , Pessoa de Meia-Idade , Polissacarídeos/isolamento & purificação
7.
Chromatographia ; 78(5-6): 321-333, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25814696

RESUMO

This review covers advances in analytical technologies for high-throughput (HTP) glycomics. Our focus is on structural studies of glycoprotein glycosylation to support biopharmaceutical realization and the discovery of glycan biomarkers for human disease. For biopharmaceuticals, there is increasing use of glycomics in Quality by Design studies to help optimize glycan profiles of drugs with a view to improving their clinical performance. Glycomics is also used in comparability studies to ensure consistency of glycosylation both throughout product development and between biosimilars and innovator drugs. In clinical studies there is as well an expanding interest in the use of glycomics-for example in Genome Wide Association Studies-to follow changes in glycosylation patterns of biological tissues and fluids with the progress of certain diseases. These include cancers, neurodegenerative disorders and inflammatory conditions. Despite rising activity in this field, there are significant challenges in performing large scale glycomics studies. The requirement is accurate identification and quantitation of individual glycan structures. However, glycoconjugate samples are often very complex and heterogeneous and contain many diverse branched glycan structures. In this article we cover HTP sample preparation and derivatization methods, sample purification, robotization, optimized glycan profiling by UHPLC, MS and multiplexed CE, as well as hyphenated techniques and automated data analysis tools. Throughout, we summarize the advantages and challenges with each of these technologies. The issues considered include reliability of the methods for glycan identification and quantitation, sample throughput, labor intensity, and affordability for large sample numbers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA