Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(35): 47552-47583, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39034377

RESUMO

In recent years, consumer preferences have begun to turn back to natural dyes, whereas synthetic dyes have been pushed into the background over the previous 60 years. This is a result of increased knowledge of the potential hazards associated with the creation of synthetic dyes, which use raw materials derived from petrochemicals and involve intense chemical interactions. Such dyes need a lot of energy to produce, and their negative effects on the environment increase pollution. It has been discovered that several of these dyes, particularly the azo-based ones are carcinogenic. On the contrary, natural dyes are getting more attention from scientists and researchers as a result of their several advantages like being eco-friendly, biodegradable and renewable, sustainable, available in nature, having no disposal problems, minimizing the consumption of fossil fuel, anti-bacterial, insect repellent, and anti-allergic, anti-ultraviolet, intensify dyeing and finishing process efficiency, less expensive, and no adverse effects on human health and environment. However, there are also some drawbacks, like poor fastness properties, natural dye printing for bulk production, difficulties in reproducibility of shades, and so forth. Despite all these limitations, the demand for natural dyes is increasing significantly in textile industries because they offer far more safety than synthetic dyes. This study provides an overall concept of the natural dyes in textile printing. It illustrates parameters of printing performance, methods, and techniques of extraction of natural dyes, printing methods, and printing of natural and synthetic fibers. Finally, this study describes the challenges and future prospects of natural dyes in textile printing.


Assuntos
Corantes , Têxteis , Corantes/química , Impressão , Indústria Têxtil
2.
RSC Adv ; 14(23): 16093-16116, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38769956

RESUMO

Today, textile-based wearable electronic devices (textronics) have been developed by taking advantage of nanotechnology and textile substrates. Textile substrates offer flexibility, air permeability, breathability, and wearability, whereas, using nanomaterials offers numerous functional properties, like electrical conductivity, hydrophobicity, touch sensitivity, self-healing properties, joule heating properties, and many more. For these reasons, textronics have been extensively used in many applications. Recently, new emerging two-dimensional (2D) transition metal carbide and nitride, known as MXene, nanomaterials have been highly considered for developing textronics because the surface functional groups and hydrophilicity of MXene nanoflakes allow the facile fabrication of MXene-based textronics. In addition, MXene nanosheets possess excellent electroconductivity and mechanical properties as well as large surface area, which also give numerous opportunities to develop novel functional MXene/textile-based wearable electronic devices. Therefore, this review summarizes the recent advancements in the architectural design of MXene-based textronics, like fiber, yarn, and fabric. Regarding the fabrication of MXene/textile composites, numerous factors affect the functional properties (e.g. fabric structure, MXene size, etc.). All the crucial affecting parameters, which should be chosen carefully during the fabrication process, are critically discussed here. Next, the recent applications of MXene-based textronics in supercapacitors, thermotherapy, and sensors are elaborately delineated. Finally, the existing challenges and future scopes associated with the development of MXene-based textronics are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA