Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
AAPS PharmSciTech ; 25(7): 227, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349907

RESUMO

Naringenin, a potent antioxidant with anti-apoptotic effects, holds potential in counteracting rotenone-induced neurotoxicity, a model for Parkinson's disease, by reducing oxidative stress and supporting mitochondrial function. Rotenone disrupts ATP production in SH-SY5Y cells through mitochondrial complex-I inhibition, leading to increased reactive oxygen species (ROS) and cellular damage. However, the therapeutic use of naringenin is limited by its poor solubility, low bioavailability, and stability concerns. Nano crystallization of naringenin (NCs), significantly improved its solubility, dissolution rates, and stability for targeted drug delivery. The developed NAR-NC and HSA-NAR-NC formulations exhibit particle sizes of 95.23 nm and 147.89 nm, with zeta potentials of -20.6 mV and -28.5 mV, respectively. These nanocrystals also maintain high drug content and show stability over time, confirming their pharmaceutical viability. In studies using the SH-SY5Y cell line, these modified nanocrystals effectively preserved mitochondrial membrane potential, sustained ATP production, and regulated ROS levels, counteracting the neurotoxic effects of rotenone. Naringenin nanocrystals offer a promising solution for improving the stability and bioavailability of naringenin, with potential therapeutic applications in neurodegenerative diseases.


Assuntos
Flavanonas , Potencial da Membrana Mitocondrial , Mitofagia , Nanopartículas , Estresse Oxidativo , Espécies Reativas de Oxigênio , Rotenona , Humanos , Flavanonas/farmacologia , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Rotenona/toxicidade , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Tamanho da Partícula , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Solubilidade , Fármacos Neuroprotetores/farmacologia
2.
J Biomater Sci Polym Ed ; : 1-35, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250527

RESUMO

The fight against Glioblastoma multiforme (GBM) is ongoing and the long-term outlook for GBM remains challenging due to low prognosis but every breakthrough brings us closer to improving patient outcomes. Significant hurdles in GBM are heterogeneity, fortified tumor location, and blood-brain barrier (BBB), hindering adequate drug concentrations within functioning brain regions, thus leading to low survival rates. The nasal passageway has become an appealing location to commence the course of cancer therapy. Utilization of the nose-to-brain (N2B) route for drug delivery takes a sidestep from the BBB to allow therapeutics to directly access the central nervous system (CNS) and enhance drug localization in the vicinity of the tumor. This comprehensive review provides insights into pertinent anatomy and cellular organization of the nasal cavity, present-day diagnostic tools, intracranial invasive therapies, and advancements in intranasal (IN) therapies in GBM models for better clinical outcomes. Also, this review highlights groundbreaking carriers and delivery techniques that could revolutionize GBM management such as biomimetics, image guiding-drug delivery, and photodynamic and photothermal therapies for GBM management.

3.
Chemphyschem ; : e202400724, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303062

RESUMO

Six isomeric molecules, featuring a minimum of three fluorine atoms on either the benzoyl or aniline side, have been synthesized, crystallized and characterized through single crystal X-ray diffraction (SCXRD). In addition, two other compounds, containing six fluorine atoms, three on each of the benzoyl and aniline side of the benzanilide scaffold have also been characterized through SCXRD. This current study aims to augment the capacity for hydrogen bond formation, specifically involving organic fluorine, by elevating the acidity of the involved hydrogens through the incorporation of highly electronegative fluorine atoms, in the presence of strong N-H×××O=C H-bonds. Lattice energy calculations and assessment of intermolecular interaction energies elucidate the contributions of electrostatics and dispersion forces in crystal packing. The topological analysis of the electron density is characterized by the presence of bond critical points (BCPs) involving C-H×××F and F×××F contacts, thus establishing the bonding nature of these interactions which play a crucial role in the crystal packing in addition to the presence of traditional N-H×××O=C H-bonds.

4.
AAPS PharmSciTech ; 25(6): 178, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095623

RESUMO

Dry powder inhalers (DPIs) are state-of-the-art pulmonary drug delivery systems. This article explores the transformative impact of nanotechnology on DPIs, emphasizing the Quality Target Product Profile (QTPP) with a focus on aerodynamic performance and particle characteristics. It navigates global regulatory frameworks, underscoring the need for safety and efficacy standards. Additionally, it highlights the emerging field of nanoparticulate dry powder inhalers, showcasing their potential to enhance targeted drug delivery in respiratory medicine. This concise overview is a valuable resource for researchers, physicians, and pharmaceutical developers, providing insights into the development and commercialization of advanced inhalation systems.


Assuntos
Sistemas de Liberação de Medicamentos , Inaladores de Pó Seco , Inaladores de Pó Seco/métodos , Humanos , Administração por Inalação , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Nanomedicina/métodos , Tamanho da Partícula , Nanotecnologia/métodos
5.
J Microencapsul ; 41(6): 434-455, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38967562

RESUMO

Osteoarthritis (OA), affecting around 240 million people globally is a major threat. Currently, available drugs only treat the symptoms of OA; they cannot reverse the disease's progression. The delivery of drugs to afflicted joints is challenging because of poor vasculature of articular cartilage results in their less bioavailability and quick elimination from the joints. Recently approved drugs such as KGN and IL-1 receptor antagonists also encounter challenges because of inadequate formulations. Therefore, microspheres could be a potential player for the intervention of OA owing to its excellent physicochemical properties. This review primarily focuses on microspheres of distinct biomaterials acting as cargo for drugs and biologicals via different delivery routes in the effective management of OA. Microspheres can improve the efficacy of therapeutics by targeting strategies at specific body locations. This review also highlights clinical trials conducted in the last few decades.


Assuntos
Sistemas de Liberação de Medicamentos , Microesferas , Osteoartrite , Osteoartrite/tratamento farmacológico , Humanos , Animais
6.
AAPS PharmSciTech ; 25(6): 149, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954224

RESUMO

Silibinin (SIL) Encapsulated Nanoliquid Crystalline (SIL-NLCs) particles were prepared to study neuroprotective effect against amyloid beta (Aß1-42) neurotoxicity in Balb/c mice model. Theses NLCs were prepared through hot emulsification and probe sonication technique. The pharmacodynamics was investigatigated on Aß1-42 intracerebroventricular (ICV) injected Balb/c mice. The particle size, zeta potential and drug loading were optimized to be 153 ± 2.5 nm, -21 mV, and 8.2%, respectively. Small angle X-ray (SAXS) and electron microscopy revealed to crystalline shape of SIL-NLCs. Thioflavin T (ThT) fluroscence and circular dichroism (CD) technique were employed to understand monomer inhibition effect of SIL-NLCs on Aß1-4. In neurobehavioral studies, SIL-NLCs exhibited enhanced mitigation of memory impairment induced on by Aß1-42 in T-maze and new object recognition test (NORT). Whereas biochemical and histopathological estimation of brain samples showed reduction in level of Aß1-42 aggregate, acetylcholine esterase (ACHE) and reactive oxygen species (ROS). SIL-NLCs treated animal group showed higher protection against Aß1-42 toxicity compared to free SIL and Donopezil (DPZ). Therefore SIL-NLCs promises great prospect in neurodegenerative diseases such as Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides , Camundongos Endogâmicos BALB C , Fármacos Neuroprotetores , Fragmentos de Peptídeos , Silibina , Animais , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Camundongos , Silibina/farmacologia , Silibina/administração & dosagem , Fragmentos de Peptídeos/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Tamanho da Partícula , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Acetilcolinesterase/metabolismo
7.
Nanomedicine (Lond) ; 19(21-22): 1743-1760, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39041671

RESUMO

Aim: This study focuses on biotinylated nanocarriers designed to encapsulate amphiphilic molecules with self-biodegradable properties for enhanced drug delivery.Methods: Biotin-zein conjugated nanoparticles were synthesized and tested in C6 cell lines to evaluate their viability and cellular uptake. Optimization was achieved using a a central composite design. The nanoparticles underwent thermogravimetric analysis, and their pharmacokinetics and biodistribution were also studied.Results: The optimized nanoparticles displayed 96.31% drug encapsulation efficiency, a particle size of 95.29 nm and a zeta potential of -17.7 mV. These nanoparticles showed increased cytotoxicity and improved cellular uptake compared with free drugs. Thermogravimetric analysis revealed that the drug-loaded nanocarriers provided better protection against drug degradation. Pharmacokinetic and biodistribution studies indicated that the formulation had an extended brain residence time, highlighting its effectiveness.Conclusion: The biotin-zein conjugated nanoparticles developed in this study offer a promising nano-vehicle for in vivo biodistribution and pharmacokinetic applications. Their high drug encapsulation efficiency, stability and extended brain residence time suggest they are effective for targeted drug delivery and therapeutic uses.


[Box: see text].


Assuntos
Biotina , Nanopartículas , Tamanho da Partícula , Zeína , Biotina/química , Biotina/farmacocinética , Animais , Zeína/química , Distribuição Tecidual , Nanopartículas/química , Portadores de Fármacos/química , Ratos , Humanos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos
8.
Curr Pharm Des ; 30(28): 2187-2205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38874046

RESUMO

Over the period of the preceding decade, artificial intelligence (AI) has proved an outstanding performance in entire dimensions of science including pharmaceutical sciences. AI uses the concept of machine learning (ML), deep learning (DL), and neural networks (NNs) approaches for novel algorithm and hypothesis development by training the machines in multiple ways. AI-based drug development from molecule identification to clinical approval tremendously reduces the cost of development and the time over conventional methods. The COVID-19 vaccine development and approval by regulatory agencies within 1-2 years is the finest example of drug development. Hence, AI is fast becoming a boon for scientific researchers to streamline their advanced discoveries. AI-based FDA-approved nanomedicines perform well as target selective, synergistic therapies, recolonize the theragnostic pharmaceutical stream, and significantly improve drug research outcomes. This comprehensive review delves into the fundamental aspects of AI along with its applications in the realm of pharmaceutical life sciences. It explores AI's role in crucial areas such as drug designing, drug discovery and development, traditional Chinese medicine, integration of multi-omics data, as well as investigations into drug repurposing and polypharmacology studies.


Assuntos
Inteligência Artificial , Tratamento Farmacológico da COVID-19 , Descoberta de Drogas , Humanos , SARS-CoV-2/efeitos dos fármacos , COVID-19 , Desenvolvimento de Medicamentos/métodos , Redes Neurais de Computação , Desenho de Fármacos
9.
Int J Biol Macromol ; 271(Pt 2): 132280, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744364

RESUMO

The successful tissue engineering depends on the development of biologically active scaffolds that possess optimal characteristics to effectively support cellular functions, maintain structural integrity and aid in tissue regeneration. Hydrogels have emerged as promising candidates in tissue regeneration due to their resemblance to the natural extracellular matrix and their ability to support cell survival and proliferation. The integration of hydrogel scaffold into the polymer has a variable impact on the pseudo extracellular environment, fostering cell growth/repair. The modification in size, shape, surface morphology and porosity of hydrogel scaffolds has consequently paved the way for addressing diverse challenges in the tissue engineering process such as tissue architecture, vascularization and simultaneous seeding of multiple cells. The present review provides a comprehensive update on hydrogel production using natural and synthetic biomaterials and their underlying mechanisms. Furthermore, it delves into the application of hydrogel scaffolds in tissue engineering for cardiac tissues, cartilage tissue, adipose tissue, nerve tissue and bone tissue. Besides, the present article also highlights various clinical studies, patents, and the limitations associated with hydrogel-based scaffolds in recent times.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Engenharia Tecidual , Alicerces Teciduais , Hidrogéis/química , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Regeneração/efeitos dos fármacos
10.
Chem Sci ; 15(17): 6544-6551, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699273

RESUMO

The development of an efficient strategy for facile access to quinoline-based bis-heterocycles holds paramount importance in medicinal chemistry. Herein, we describe a unified approach for accessing 8-(indol-3-yl)methyl-quinolines by integrating Cp*Rh(iii)-catalyzed C(sp3)-H bond activation of 8-methylquinolines followed by nucleophilic cyclization with o-ethynylaniline derivatives. Remarkably, methoxybiaryl ynones under similar catalytic conditions delivered quinoline tethered spiro[5.5]enone scaffolds via a dearomative 6-endo-dig C-cyclization. Moreover, leveraging this method for C8(sp2)-H bond activation of quinoline-N-oxide furnished biologically relevant oxindolyl-quinolines. This reaction proceeds via C(sp2)-H bond activation, regioselective alkyne insertion, oxygen-atom-transfer (OAT) and intramolecular nucleophilic cyclization in a cascade manner. One C-C, one C-N and one C[double bond, length as m-dash]O bond were created with concomitant formation of a quaternary center.

11.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 80(Pt 3): 163-170, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682692

RESUMO

Hydrogen-bonding and halogen-bonding interactions are important noncovalent interactions that play a significant role in the crystal structure of organic molecules. An in-depth analysis is given of the crystal packing of two previously reported crystal structures of dihalogenated 1,2,4-triazole derivatives, namely 3,5-dichloro-1H-1,2,4-triazole and 3,5-dibromo-1H-1,2,4-triazole. This work provides insights into the complex interplay of hydrogen-bonding and halogen-bonding interactions resulting in the formation of multiple trimeric motifs in the crystal structure of 1,2,4-triazole derivatives. Analysis of the crystal packing of these isostructural crystal structures revealed that the molecular arrangement in these molecules is primarily stabilized by the formation of different trimeric motifs stabilized by N-H...N hydrogen bonds, N-H...X (X = Cl/Br) halogen bonds and C-X...X halogen-bonding interactions. Computational studies further revealed that all these trimers are energetically stable. A crystallographic database search further reveals that while the cyclic trimers reported in this study are present in other molecules, structures analyzed in this study are the sole instances where all are present simultaneously.

12.
Mol Neurobiol ; 61(11): 8702-8738, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38558360

RESUMO

Blood-brain barrier (BBB) is a distinguishing checkpoint that segregates peripheral organs from neural compartment. It protects the central nervous system from harmful ambush of antigens and pathogens. Owing to such explicit selectivity, the BBB hinders passage of various neuroprotective drug molecules that escalates into poor attainability of neuroprotective agents towards the brain. However, few molecules can surpass the BBB and gain access in the brain parenchyma by exploiting surface transporters and receptors. For successful development of brain-targeted therapy, understanding of BBB transporters and receptors is crucial. This review focuses on the transporter and receptor-based mechanistic pathway that can be manoeuvred for better comprehension of reciprocity of receptors and nanotechnological vehicle delivery. Nanotechnology has emerged as one of the expedient noninvasive approaches for brain targeting via manipulating the hurdle of the BBB. Various nanovehicles are being reported for brain-targeted delivery such as nanoparticles, nanocrystals, nanoemulsion, nanolipid carriers, liposomes and other nanovesicles. Nanotechnology-aided brain targeting can be a strategic approach to circumvent the BBB without altering the inherent nature of the BBB.


Assuntos
Barreira Hematoencefálica , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Humanos , Animais , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Receptores de Superfície Celular/metabolismo , Transporte Biológico , Nanotecnologia/métodos
13.
Int J Biol Macromol ; 266(Pt 1): 131048, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522697

RESUMO

Past scientific testimonials in the field of glioma research, the deadliest tumor among all brain cancer types with the life span of 10-15 months after diagnosis is considered as glioblastoma multiforme (GBM). Even though the availability of treatment options such as chemotherapy, radiotherapy, and surgery, are unable to completely cure GBM due to tumor microenvironment complexity, intrinsic cellular signalling, and genetic mutations which are involved in chemoresistance. The blood-brain barrier is accountable for restricting drugs entry at the tumor location and related biological challenges like endocytic degradation, short systemic circulation, and insufficient cellular penetration lead to tumor aggression and progression. The above stated challenges can be better mitigated by small interfering RNAs (siRNA) by knockdown genes responsible for tumor progression and resistance. However, siRNA encounters with challenges like inefficient cellular transfection, short circulation time, endogenous degradation, and off-target effects. The novel functionalized nanocarrier approach in conjunction with biological and chemical modification offers an intriguing potential to address challenges associated with the naked siRNA and efficiently silence STAT3, coffilin-1, EGFR, VEGF, SMO, MGMT, HAO-1, GPX-4, TfR, LDLR and galectin-1 genes in GBM tumor. This review highlights the nanoengineered siRNA carriers, their recent advancements, future perspectives, and strategies to overcome the systemic siRNA delivery challenges for glioma treatment.


Assuntos
Neoplasias Encefálicas , Glioma , RNA Interferente Pequeno , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Glioma/genética , Glioma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Nanopartículas/química , Animais , Portadores de Fármacos/química , Terapia Genética/métodos
14.
J Am Chem Soc ; 146(12): 8659-8667, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38407928

RESUMO

The solid-state synthesis of single-crystalline organic polymers, having functional properties, remains an attractive and developing research area in polymer chemistry and materials science. However, light-triggered topochemical synthesis of crystalline polymers comprising an organoboron backbone has not yet been reported. Here, we describe an intriguing example of single-crystal-to-single-crystal (SCSC) rapid photosynthesis (occurs on a seconds-scale) of two structurally different linear organoboron polymers, driven by environmentally sustainable visible/sun light, obtained from the same monomer molecule. A newly designed Lewis acid-base type molecular B ← N organoboron adduct (consisting of an organoboron core and naphthylvinylpyridine ligands) crystallizes in two solid-state forms featuring the same chemical structure but different 3D structural topologies, namely, monomers 1 and 2. The solvate molecule-free crystals of 1 undergo topochemical photopolymerization via an unusual olefin-naphthyl ring [2 + 2] cyclization to yield the single crystalline [3]-ladderane polymer 1P growing along the B ← N linkages, accompanied by instantaneous and violent macroscopic mechanical motions or photosalient effects (such as bending-reshaping and jumping motions). In contrast, visible light-harvesting single crystals of 2 quantitatively polymerize to a B ← N bond-stabilized polymer 2P in a SCSC fashion owing to the rapid [2 + 2] cycloaddition reaction among olefin double bonds. Such olefin bonds in the crystals of 2 are suitably preorganized for photoreaction due to the presence of solvate molecules in the crystal packing. Single crystals of 2 also show photodynamic jumping motions - in response to visible light but in a relatively slower fashion than the crystals of 1. In addition to SCSC topochemical polymerization and dynamic motions, both monomer crystals and their single-crystalline polymers feature green emissive and short-lived room-temperature phosphorescence properties upon excitation with visible-light wavelength.

15.
AAPS PharmSciTech ; 25(3): 41, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366178

RESUMO

Viral infections represent a significant threat to global health due to their highly communicable and potentially lethal nature. Conventional antiviral interventions encounter challenges such as drug resistance, tolerability issues, specificity concerns, high costs, side effects, and the constant mutation of viral proteins. Consequently, the exploration of alternative approaches is imperative. Therefore, nanotechnology-embedded drugs excelled as a novel approach purporting severe life-threatening viral disease. Integrating nanomaterials and nanoparticles enables ensuring precise drug targeting, improved drug delivery, and fostered pharmacokinetic properties. Notably, nanocrystals (NCs) stand out as one of the most promising nanoformulations, offering remarkable characteristics in terms of physicochemical properties (higher drug loading, improved solubility, and drug retention), pharmacokinetics (enhanced bioavailability, dose reduction), and optical properties (light absorptivity, photoluminescence). These attributes make NCs effective in diagnosing and ameliorating viral infections. This review comprises the prevalence, pathophysiology, and resistance of viral infections along with emphasizing on failure of current antivirals in the management of the diseases. Moreover, the review also highlights the role of NCs in various viral infections in mitigating, diagnosing, and other NC-based strategies combating viral infections. In vitro, in vivo, and clinical studies evident for the effectiveness of NCs against viral pathogens are also discussed.


Assuntos
Nanopartículas , Viroses , Humanos , Preparações Farmacêuticas/química , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Viroses/tratamento farmacológico , Nanopartículas/química , Antivirais/farmacologia , Antivirais/uso terapêutico
16.
J Drug Target ; 32(4): 347-364, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38253594

RESUMO

PRIMARY OBJECTIVE: The primary objective of the review is to assess the potential of lymphatic-targeted drug delivery systems, with a particular emphasis on their role in tumour therapy and vaccination efficacy. REASON FOR LYMPHATIC TARGETING: The lymphatic system's crucial functions in maintaining bodily equilibrium, regulating metabolism, and orchestrating immune responses make it an ideal target for drug delivery. Lymph nodes, being primary sites for tumour metastasis, underscore the importance of targeting the lymphatic system for effective treatment. OUTCOME: Nanotechnologies and innovative biomaterials have facilitated the development of lymphatic-targeted drug carriers, leveraging endogenous macromolecules to enhance drug delivery efficiency. Various systems such as liposomes, micelles, inorganic nanomaterials, hydrogels, and nano-capsules demonstrate significant potential for delivering drugs to the lymphatic system. CONCLUSION: Understanding the physiological functions of the lymphatic system and its involvement in diseases underscores the promise of targeted drug delivery in improving treatment outcomes. The strategic targeting of the lymphatic system presents opportunities to enhance patient prognosis and advance therapeutic interventions across various medical contexts, indicating the importance of ongoing research and development in this area.


Assuntos
Vasos Linfáticos , Nanopartículas , Neoplasias , Humanos , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Sistema Linfático/metabolismo , Neoplasias/metabolismo
17.
Drug Deliv Transl Res ; 14(1): 1-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37552393

RESUMO

Vincristine (VCR) is a chemotherapeutic agent obtained from natural alkaloid plant source Catharanthus roseus. VCR has been significantly useful in treatments of lung cancer, lymphocyte-based leukaemia, glioblastomas and acute myeloid leukaemia. VCR attaches to tubulin fibrils and prevents filament polymerization that permanently led to mitosis inhibition in cancer cells. Clinically, VCR is administered to patients in multidrug combination to reduce adverse drug effects and potential blockage of bone marrow inhibition due to prescribed monotherapy. However, VCR possesses low cancer tissue affinity and at higher dose often led to irreversible neurotoxicity. Conventional VCR injectables are successfully used in clinics, but lack of controlled release, non-specific biodistribution and consequent off-target side effects are still major challenges. Currently, nanotechnological drug delivery systems are being explored for improvement of VCR pharmacokinetic profile and tumour-specific targeting. Various nanomedicine formulations such as liposomes, lipid nanoparticles, and polymeric nanocarriers of VCR have been studied under various in vitro and in vivo models. In this review, we have summarised the chemotherapeutic role of VCR, evaluated the mechanism of action, pharmacokinetics and challenges associated with VCR delivery. Moreover, application of VCR in nanomedicine and effect on anticancer efficacy in preclinical and clinical setting are also being discussed.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Vincristina/efeitos adversos , Distribuição Tecidual , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares/tratamento farmacológico
18.
ACS Chem Neurosci ; 15(1): 31-55, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38118278

RESUMO

Neuroinflammation is a key pathophysiological feature of stroke-associated brain injury. A local innate immune response triggers neuroinflammation following a stroke via activating inflammasomes. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome has been heavily implicated in stroke pathobiology. Following a stroke, several stimuli have been suggested to trigger the assembly of the NLRP3 inflammasome. Recent studies have advanced the understanding and revealed several new players regulating NLRP3 inflammasome-mediated neuroinflammation. This article discussed recent advancements in NLRP3 assembly and highlighted stroke-induced mitochondrial dysfunction as a major checkpoint to regulating NLRP3 activation. The NLRP3 inflammasome activation leads to caspase-1-dependent maturation and release of IL-1ß, IL-18, and gasdermin D. In addition, genetic or pharmacological inhibition of the NLRP3 inflammasome activation and downstream signaling has been shown to attenuate brain infarction and improve the neurological outcome in experimental models of stroke. Several drug-like small molecules targeting the NLRP3 inflammasome are in different phases of development as novel therapeutics for various inflammatory conditions, including stroke. Understanding how these molecules interfere with NLRP3 inflammasome assembly is paramount for their better optimization and/or development of newer NLRP3 inhibitors. In this review, we summarized the assembly of the NLRP3 inflammasome and discussed the recent advances in understanding the upstream regulators of NLRP3 inflammasome-mediated neuroinflammation following stroke. Additionally, we critically examined the role of the NLRP3 inflammasome-mediated signaling in stroke pathophysiology and the development of therapeutic modalities to target the NLRP3 inflammasome-related signaling for stroke treatment.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias , Acidente Vascular Cerebral/tratamento farmacológico , Interleucina-1beta/metabolismo
19.
Mol Neurobiol ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066399

RESUMO

Wilson disease, a rare genetic disorder resulting from mutations in the ATP7B gene disrupts copper metabolism, leading to its harmful accumulation in hepatocytes, the brain, and other organs. It affects roughly 1 in 30,000 individuals, with 1 in 90 being gene carriers. Beyond gene mutations, the disease involves complex factors contributing to copper imbalance. Ongoing research seeks to unravel intricate molecular pathways, offering fresh insights into the disease's mechanisms. Simultaneously, there is a dedicated effort to develop effective therapeutic strategies. Nanotechnology-driven formulations are showing promise for both treatment and early diagnosis of Wilson disease. This comprehensive review covers the entire spectrum of the condition, encompassing pathophysiology, potential biomarkers, established and emerging therapies, ongoing clinical trials, and innovative nanotechnology applications. This multifaceted approach holds the potential to improve our understanding, diagnosis, and management of Wilson's disease, which remains a challenging and potentially life-threatening disorder.

20.
AAPS PharmSciTech ; 24(8): 223, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37945928

RESUMO

Rivastigmine hydrogen tartrate (RHT) is an acetylcholinesterase (AChE) inhibitor used in the management of Alzheimer's disease (AD). RHT is a BCS class-I drug that undergoes significant first-pass metabolism. Permeating a hydrophilic drug through the brain remains a major challenge in brain delivery. In this study, the RHT was incorporated inside the hydrophilic core of liposomes (LPS) and then coated with the ApoE3. ApoE3-coated RHT-loaded liposomes (ApoE3-RHT-LPS) were fabricated through the thin film hydration method using DSPE-PEG. The coating of LPS with ApoE3 enhances brain uptake and improves Aß clearance. The results obtained from the physicochemical characterization demonstrated that ApoE3-RHT-LPS shows a particle size of 128.6 ± 2.16 nm and a zeta potential of 16.6 ± 1.19. The % entrapment efficiency and % drug loading were found to be 75% and 17.84%, respectively. The data obtained from TEM and SEM studies revealed that the particle size of the LPS was less than 200 nm. An in vitro AChE assay was performed, and the results demonstrated the AChE inhibitory potential of ApoE3-RHT-LPS. Through the intravenous route, an in vivo pharmacokinetic study of formulation displayed improved brain uptake of RHT by ~ 1.3-fold than pure RHT due to ApoE3 coating. In vivo, biodistribution studies in vital organs suggested that the biodistribution of RHT to the liver was significantly reduced (p < 0.001), signifying an increase in the drug's half-life and blood circulation time. All research findings suggested that ApoE3 coating and LPS strategy are proven effective for improving the brain uptake of RHT designed for the management of AD.


Assuntos
Doença de Alzheimer , Lipossomos , Humanos , Rivastigmina , Lipossomos/química , Apolipoproteína E3/metabolismo , Apolipoproteína E3/farmacologia , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Acetilcolinesterase/uso terapêutico , Distribuição Tecidual , Lipopolissacarídeos , Encéfalo/metabolismo , Inibidores da Colinesterase , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA