Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(7)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39061965

RESUMO

Parkinson's disease (PD) is one of the most common human neurodegenerative diseases. Belated diagnoses of PD and late treatment are caused by its elongated prodromal phase. Thus, searching for new candidate genes participating in the development of the pathological process in the early stages of the disease in patients who have not yet received therapy is relevant. Changes in mRNA and protein levels have been described both in the peripheral blood and in the brain of patients with PD. Thus, analysis of changes in the mRNA expression in peripheral blood is of great importance in studying the early stages of PD. This work aimed to analyze the changes in MEF2C, SLC22A4, P2RY12, and LRRN3 gene expression in the peripheral blood of patients in the early stages of PD. We found a statistically relevant and PD-specific change in the expression of the LRRN3 gene, indicating a disruption in the processes of neuronal regeneration and the functioning of synapses. The data obtained during the study indicate that this gene can be considered a potential biomarker of the early stages of PD.

2.
Int J Mol Sci ; 25(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39062963

RESUMO

Parkinson's disease (PD) is characterized by a long prodromal period, during which patients often have sleep disturbances. The histaminergic system and circadian rhythms play an important role in the regulation of the sleep-wake cycle. Changes in the functioning of these systems may be involved in the pathogenesis of early stages of PD and may be age-dependent. Here, we have analyzed changes in the expression of genes associated with the regulation of the sleep-wake cycle (Hnmt, Hrh1, Hrh3, Per1, Per2, and Chrm3) in the substantia nigra (SN) and striatum of normal male mice of different ages, as well as in young and adult male mice with an MPTP-induced model of the early symptomatic stage (ESS) of PD. Age-dependent expression analysis in normal mouse brain tissue revealed changes in Hrh3, Per1, Per2, and Chrm3 genes in adult mice relative to young mice. When gene expression was examined in mice with the MPTP-induced model of the ESS of PD, changes in the expression of all studied genes were found only in the SN of adult mice with the ESS model of PD. These data suggest that age is a significant factor influencing changes in the expression of genes associated with sleep-wake cycle regulation in the development of PD.


Assuntos
Ritmo Circadiano , Animais , Camundongos , Masculino , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Sono/genética , Envelhecimento/genética , Modelos Animais de Doenças , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Corpo Estriado/metabolismo , Intoxicação por MPTP/genética , Intoxicação por MPTP/metabolismo , Fatores Etários , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Vigília
3.
Biomed Res Int ; 2023: 9412776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027039

RESUMO

Parkinson's disease (PD) is a common chronic, age-related neurodegenerative disease. This disease is characterized by a long prodromal period. In this context, it is important to search for the genes and mechanisms that are involved in the development of the pathological process in the earliest stages of the disease. Published data suggest that blood cells, particularly lymphocytes, may be a model for studying the processes that occur in the brain in PD. Thus, in the present work, we performed an analysis of changes in the expression of the genes ADORA2A, MTA1, PTGDS, PTGS2, NSF, and HNMT in the peripheral blood of patients with early stages of PD (stages 1 and 2 of the Hoehn-Yahr scale). We found significant and PD-specific expression changes of four genes, i.e., MTA1, PTGS2, NSF, and HNMT, in the peripheral blood of patients with early stages of PD. These genes may be associated with PD pathogenesis in the early clinical stages and can be considered as potential candidate genes for this disease. Altered expression of the ADORA2A gene in treated PD patients may indicate that this gene is involved in processes affected by antiparkinsonian therapy.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Ciclo-Oxigenase 2/genética , Doenças Neurodegenerativas/complicações , Encéfalo/patologia , Expressão Gênica
4.
Int J Neurosci ; 128(12): 1174-1179, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30375904

RESUMO

AIM OF THE STUDY: It was found that the mutations in the SDHD gene, encoding one of subunits of the succinate dehydrogenase complex, lead to the development of head and neck paraganglioma (HNPGL). We analyzed this gene in 91 patients with HNPGL from Russia. MATERIALS AND METHODS: DNA was isolated from the whole blood. A screening for mutations was performed by Sanger sequencing. RESULTS: We revealed three missense mutations that have been described previously: p.Pro81Leu, p.His102Arg, p.Tyr114Cys. Moreover, we identified a novel potentially pathogenic variant (p.Trp105*). CONCLUSIONS: We found that mutations in the SDHD gene were less common in Russian patients compared with the majority of European populations. It was shown that the p.His102Arg mutation is a major mutation in Russia. We confirmed the previous suggestion that a bilateral localization of the tumor and the carotid type represent a marker of the genetically determined form of HNPGL.


Assuntos
Neoplasias de Cabeça e Pescoço/genética , Mutação de Sentido Incorreto , Paraganglioma/genética , Succinato Desidrogenase/genética , Adulto , Idoso , Feminino , Predisposição Genética para Doença , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Paraganglioma/patologia , Federação Russa
5.
Front Aging Neurosci ; 10: 136, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867446

RESUMO

Background: Parkinson's disease (PD) is a complex disease with its monogenic forms accounting for less than 10% of all cases. Whole-exome sequencing (WES) technology has been used successfully to find mutations in large families. However, because of the late onset of the disease, only small families and unrelated patients are usually available. WES conducted in such cases yields in a large number of candidate variants. There are currently a number of imperfect software tools that allow the pathogenicity of variants to be evaluated. Objectives: We analyzed 48 unrelated patients with an alleged autosomal dominant familial form of PD using WES and developed a strategy for selecting potential pathogenetically significant variants using almost all available bioinformatics resources for the analysis of exonic areas. Methods: DNA sequencing of 48 patients with excluded frequent mutations was performed using an Illumina HiSeq 2500 platform. The possible pathogenetic significance of identified variants and their involvement in the pathogenesis of PD was assessed using SNP and Variation Suite (SVS), Combined Annotation Dependent Depletion (CADD) and Rare Exome Variant Ensemble Learner (REVEL) software. Functional evaluation was performed using the Pathway Studio database. Results: A significant reduction in the search range from 7082 to 25 variants in 23 genes associated with PD or neuronal function was achieved. Eight (FXN, MFN2, MYOC, NPC1, PSEN1, RET, SCN3A and SPG7) were the most significant. Conclusions: The multistep approach developed made it possible to conduct an effective search for potential pathogenetically significant variants, presumably involved in the pathogenesis of PD. The data obtained need to be further verified experimentally.

6.
Int J Neurosci ; 127(9): 781-784, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27798970

RESUMO

AIM OF THE STUDY: Mutations in PARK2 are one of the causes of Parkinson's disease (PD). Deletions and duplications/triplications of one exon or exon groups account for a large proportion of mutations in the gene. At the present time, it is still not fully clear whether heterozygous mutations cause the development of PD. Our study aimed at conducting screening for mutations in PARK2 in patients with a sporadic form of PD to clarify the role of PARK2 in the development of PD. MATERIALS AND METHODS: The cohort of 327 patients with PD was screened by quantitative real-time polimerase chain reaction (PCR) with subsequent Sanger sequencing. RESULTS: It was found that a sufficiently large proportion of these patients (21 patients, 6.4%) were carriers of heterozygous deletions or duplications in PARK2. Analysis of PARK2 exon rearrangement carriers for the presence of point mutations in PARK2 did not reveal any variants with pathogenic significance. CONCLUSIONS: Thus, our data indicate that heterozygous deletions and duplications can play an important role in the pathogenesis of PD and can be considered as dominant mutations with low penetrance.


Assuntos
Doença de Parkinson/genética , Mutação Puntual/genética , Ubiquitina-Proteína Ligases/genética , Idoso , Estudos de Coortes , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA