RESUMO
OBJECTIVES: To assess whether the use of rapid influenza diagnostic tests (RIDTs) for long-term care facility (LTCF) residents with acute respiratory infection is associated with increased antiviral use and decreased health care utilization. DESIGN: Nonblinded, pragmatic, randomized controlled trial evaluating a 2-part intervention with modified case identification criteria and nursing staff-initiated collection of nasal swab specimen for on-site RIDT. SETTING AND PARTICIPANTS: Residents of 20 LTCFs in Wisconsin matched by bed capacity and geographic location and then randomized. METHODS: Primary outcome measures, expressed as events per 1000 resident-weeks, included antiviral treatment courses, antiviral prophylaxis courses, total emergency department (ED) visits, ED visits for respiratory illness, total hospitalizations, hospitalizations for respiratory illness, hospital length of stay, total deaths, and deaths due to respiratory illness over 3 influenza seasons. RESULTS: Oseltamivir use for prophylaxis was higher at intervention LTCFs [2.6 vs 1.9 courses per 1000 person-weeks; rate ratio (RR) 1.38, 95% CI 1.24-1.54; P < .001]; rates of oseltamivir use for influenza treatment were not different. Rates of total ED visits (7.6 vs 9.8/1000 person-weeks; RR 0.78, 95% CI 0.64-0.92; P = .004), total hospitalizations (8.6 vs 11.0/1000 person-weeks; RR 0.79, 95% CI 0.67-0.93; P = .004), and hospital length of stay (35.6 days vs 55.5 days/1000 person-weeks; RR 0.64, 95% CI 0.0.59-0.69; P < .001) were lower at intervention as compared to control LTCFs. No significant differences were noted for respiratory-related ED visits or hospitalizations or in rates for all-cause or respiratory-associated mortality. CONCLUSIONS AND IMPLICATIONS: The use of low threshold criteria to trigger nursing staff-initiated testing for influenza with RIDT resulted in increased prophylactic use of oseltamivir. There were significant reductions in the rates of all-cause ED visits (22% decline), hospitalizations (21% decline), and hospital length of stay (36% decline) across 3 combined influenza seasons. No significant differences were noted in respiratory-associated and all-cause deaths between intervention and control sites.
Assuntos
Influenza Humana , Humanos , Influenza Humana/diagnóstico , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Oseltamivir/uso terapêutico , Assistência de Longa Duração , Hospitalização , Surtos de Doenças/prevenção & controle , Serviço Hospitalar de Emergência , Antivirais/uso terapêuticoRESUMO
Rapid influenza diagnostic tests (RIDT) demonstrate varying sensitivities, often necessitating reverse transcriptase polymerase chain reaction (RT-PCR) to confirm results. The two methods generally require separate specimens. Using the same anterior nasal swab for both RIDT and molecular confirmation would reduce cost and waste and increase patient comfort. The aim of this study was to determine if RIDT residual nasal swab (rNS) specimens are adequate for RT-PCR and whole genome sequencing (WGS). We performed RT-PCR and WGS on paired rNS and nasopharyngeal or oropharyngeal (NP/OP) swab specimens that were collected from primary care patients across all ages. We randomly selected 199 and 40 paired specimens for RT-PCR and WGS, respectively, from the 962 paired surveillance specimens collected during the 2014-2015 influenza season. Sensitivity and specificity for rNS specimens were 81.3% and 96.7%, respectively, as compared to NP/OP specimens. The mean cycle threshold (Ct) value for the NP/OP specimen was significantly lower when the paired specimens were both positive than when the NP/OP swab was positive and the nasal swab was negative (25.5 vs 29.5; p<0.001). Genomic information was extracted from all 40 rNS specimens and 37 of the 40 NP/OP specimens. Complete WGS reads were available for 67.5% (14 influenza A; 13 influenza B) of the rNS specimens and 59.5% (14 influenza A; 8 influenza B) of the NP/OP specimens. It is feasible to use a single anterior nasal swab for RIDT followed by RT-PCR and/or WGS. This approach may be appropriate in situations where training and supplies are limited. Additional studies are needed to determine if residual nasal swabs from other rapid diagnostic tests produce similar results.
RESUMO
BACKGROUND: Seasonal influenza leads to an increase in outpatient clinic visits. Timely, accurate, and affordable testing could facilitate improved treatment outcomes. Rapid influenza diagnostic tests (RIDTs) provide results in as little as 15 minutes and are relatively inexpensive, but have reduced sensitivity when compared to RT-PCR. The contributions of multiple factors related to test performance are not well defined for ambulatory care settings. We assessed clinical and laboratory factors that may affect the sensitivity and specificity of Sofia Influenza A+B Fluorescence Immunoassay. STUDY DESIGN: We performed a post-hoc assessment of surveillance data amassed over seven years from five primary care clinics. We analyzed 4,475 paired RIDT and RT-PCR results from specimens collected from patients presenting with respiratory symptoms and examined eleven potential factors with additional sub-categories that could affect RIDT sensitivity. RESULTS: In an unadjusted analysis, greater sensitivity was associated with the presence of an influenza-like illness (ILI), no other virus detected, no seasonal influenza vaccination, younger age, lower cycle threshold value, fewer days since illness onset, nasal discharge, stuffy nose, and fever. After adjustment, presence of an ILI, younger age, fewer days from onset, no co-detection, and presence of a nasal discharge maintained significance. CONCLUSION: Clinical and laboratory factors may affect RIDT sensitivity. Identifying potential factors during point-of-care testing could aid clinicians in appropriately interpreting negative influenza RIDT results.
Assuntos
Influenza Humana , Assistência Ambulatorial , Instituições de Assistência Ambulatorial , Humanos , Imunoensaio/métodos , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Schools are primary venues of influenza amplification with secondary spread to communities. We assessed K-12 student absenteeism monitoring as a means for early detection of influenza activity in the community. MATERIALS AND METHODS: Between September 2014 and March 2020, we conducted a prospective observational study of all-cause (a-TOT), illness-associated (a-I), and influenza-like illness-associated (a-ILI) absenteeism within the Oregon School District (OSD), Dane County, Wisconsin. Absenteeism was reported through the electronic student information system. Students were visited at home where pharyngeal specimens were collected for influenza RT-PCR testing. Surveillance of medically-attended laboratory-confirmed influenza (MAI) occurred in five primary care clinics in and adjoining the OSD. Poisson general additive log linear regression models of daily counts of absenteeism and MAI were compared using correlation analysis. FINDINGS: Influenza was detected in 723 of 2,378 visited students, and in 1,327 of 4,903 MAI patients. Over six influenza seasons, a-ILI was significantly correlated with MAI in the community (r = 0.57; 95% CI: 0.53-0.63) with a one-day lead time and a-I was significantly correlated with MAI in the community (r = 0.49; 0.44-0.54) with a 10-day lead time, while a-TOT performed poorly (r = 0.27; 0.21-0.33), following MAI by six days. DISCUSSION: Surveillance using cause-specific absenteeism was feasible and performed well over a study period marked by diverse presentations of seasonal influenza. Monitoring a-I and a-ILI can provide early warning of seasonal influenza in time for community mitigation efforts.
Assuntos
Absenteísmo , Influenza Humana , Humanos , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Instituições Acadêmicas , Estudantes , Wisconsin/epidemiologiaRESUMO
BACKGROUND: Influenza viruses pose significant disease burdens through seasonal outbreaks and unpredictable pandemics. Existing surveillance programs rely heavily on reporting of medically attended influenza (MAI). Continuously monitoring cause-specific school absenteeism may identify local acceleration of seasonal influenza activity. The Oregon Child Absenteeism Due to Respiratory Disease Study (ORCHARDS; Oregon, WI) implements daily school-based monitoring of influenza-like illness-specific student absenteeism (a-ILI) in kindergarten through Grade 12 schools and assesses this approach for early detection of accelerated influenza and other respiratory pathogen transmission in schools and surrounding communities. METHODS: Starting in September 2014, ORCHARDS combines automated reporting of daily absenteeism within six schools and home visits to school children with acute respiratory infection (ARI). Demographic, epidemiological, and symptom data are collected along with respiratory specimens. Specimens are tested for influenza and other respiratory viruses. Household members can opt into a supplementary household transmission study. Community comparisons are possible using a pre-existing and highly effective influenza surveillance program, based on MAI at five family medicine clinics in the same geographical area. RESULTS: Over the first 5 years, a-ILI occurred on 6634 (0.20%) of 3,260,461 student school days. Viral pathogens were detected in 64.5% of 1728 children with ARI who received a home visit. Influenza was the most commonly detected virus, noted in 23.3% of ill students. CONCLUSION: ORCHARDS uses a community-based design to detect influenza trends over multiple seasons and to evaluate the utility of absenteeism for early detection of accelerated influenza and other respiratory pathogen transmission in schools and surrounding communities.
Assuntos
Influenza Humana , Infecções Respiratórias , Vírus , Absenteísmo , Criança , Humanos , Oregon/epidemiologia , Infecções Respiratórias/epidemiologia , Instituições AcadêmicasRESUMO
The SARS-CoV-2 pandemic has led to an unprecedented demand for diagnostic tests. Many studies have modeled the efficiency gains of specimen pooling, but few have systematically evaluated the dilution effect of pooling on the sensitivity of tests. Using the frequency distribution of cycle threshold (Ct ) values of our first 838 SARS-CoV-2 positive specimens, we modeled 100 specimens on the same frequency distribution. Given this distribution, we then tested dilutions of 1:5, 1:10, and 1:50 to find the percentage of specimens positive at each Ct value with each pool size. Using the frequency distribution and the percentage of specimens positive at each Ct value, we estimate that pools of 5 lead to 93% sensitivity, pools of 10 lead to 91% sensitivity, and pools of 50 lead to 81% sensitivity. Pools of 5 and 10 lead to some specimens with Ct values of ≥32 becoming negative, while pools of 50 lead to some specimens with Ct values of ≥28 becoming negative. These sensitivity estimates can inform laboratories seeking to implement pooling approaches as they seek to balance test efficiency with sensitivity.
Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Reação em Cadeia da Polimerase/métodos , SARS-CoV-2/genética , COVID-19/virologia , Testes Diagnósticos de Rotina/métodos , Humanos , Pandemias/prevenção & controle , RNA Viral/genética , Sensibilidade e Especificidade , Manejo de Espécimes/métodosRESUMO
Human-to-swine transmission of seasonal influenza viruses has led to sustained human-like influenza viruses circulating in the U.S. swine population. While some reverse zoonotic-origin viruses adapt and become enzootic in swine, nascent reverse zoonoses may result in virus detections that are difficult to classify as "swine-origin" or "human-origin" due to the genetic similarity of circulating viruses. This is the case for human-origin influenza A(H1N1) pandemic 2009 (pdm09) viruses detected in pigs following numerous reverse zoonosis events since the 2009 pandemic. We report the identification of two human infections with A(H1N1)pdm09 viruses originating from swine hosts and classify them as "swine-origin" variant influenza viruses based on phylogenetic analysis and sequence comparison methods. Phylogenetic analyses of viral genomes from two cases revealed these viruses were reassortants containing A(H1N1)pdm09 hemagglutinin (HA) and neuraminidase (NA) genes with genetic combinations derived from the triple reassortant internal gene cassette. Follow-up investigations determined that one individual had direct exposure to swine in the week preceding illness onset, while another did not report swine exposure. The swine-origin A(H1N1) variant cases were resolved by full genome sequence comparison of the variant viruses to swine influenza genomes. However, if reassortment does not result in the acquisition of swine-associated genes and swine virus genomic sequences are not available from the exposure source, future cases may not be discernible. We have developed a pipeline that performs maximum likelihood analyses, a k-mer-based set difference algorithm, and random forest algorithms to identify swine-associated sequences in the hemagglutinin gene to differentiate between human-origin and swine-origin A(H1N1)pdm09 viruses.IMPORTANCE Influenza virus infects a wide range of hosts, resulting in illnesses that vary from asymptomatic cases to severe pneumonia and death. Viral transfer can occur between human and nonhuman hosts, resulting in human and nonhuman origin viruses circulating in novel hosts. In this work, we have identified the first case of a swine-origin influenza A(H1N1)pdm09 virus resulting in a human infection. This shows that these viruses not only circulate in swine hosts, but are continuing to evolve and distinguish themselves from previously circulating human-origin influenza viruses. The development of techniques for distinguishing human-origin and swine-origin viruses are necessary for the continued surveillance of influenza viruses. We show that unique genetic signatures can differentiate circulating swine-associated strains from circulating human-associated strains of influenza A(H1N1)pdm09, and these signatures can be used to enhance surveillance of swine-origin influenza.
Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Pandemias/veterinária , Zoonoses/virologia , Adulto , Idoso , Animais , Cães , Feminino , Genoma Viral/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/transmissão , Células Madin Darby de Rim Canino , Masculino , Neuraminidase/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/transmissão , Filogenia , Vírus Reordenados/classificação , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Suínos , Proteínas Virais/genética , Zoonoses/transmissãoRESUMO
We analyzed 4,352 participant- and staff-collected respiratory specimens from 2,796 subjects in the Oregon Child Absenteeism due to Respiratory Disease Study. Trained staff collected oropharyngeal specimens from school-aged children with acute respiratory illness while household participants of all ages collected their own midturbinate nasal specimens in year one and anterior nasal specimens in year two. Human ribonuclease P levels were measured using RT-PCR for all staff- and participant-collected specimens to determine adequacy, defined as Cycle threshold less than 38. Overall, staff- and participant-collected specimens were 99.9% and 96.4% adequate, respectively. Participant-collected midturbinate specimens were 95.2% adequate in year one, increasing to 97.2% in year two with anterior nasal collection. The mean human ribonuclease P Cycle threshold for participant-collected specimens was 31.18 in year one and 28.48 in year two. The results from this study suggest that community-based participant collection of respiratory specimens is comparable to staff-collected oropharyngeal specimens, is feasible, and may be optimal with anterior nasal collection.
Assuntos
Cavidade Nasal/enzimologia , Orofaringe/enzimologia , Ribonuclease P/genética , Ribonuclease P/isolamento & purificação , Manejo de Espécimes/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Serviços de Saúde Comunitária , Feminino , Humanos , Influenza Humana/diagnóstico , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Cavidade Nasal/virologia , Orofaringe/virologia , Participação do Paciente/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Manejo de Espécimes/instrumentação , Wisconsin , Adulto JovemRESUMO
Influenza virus isolation from clinical samples is critical for the identification and characterization of circulating and emerging viruses. Yet efficient isolation can be difficult. In these studies, we isolated primary swine nasal and tracheal respiratory epithelial cells and immortalized swine nasal epithelial cells (siNEC) and tracheal epithelial cells (siTEC) that retained the abilities to form tight junctions and cilia and to differentiate at the air-liquid interface like primary cells. Critically, both human and swine influenza viruses replicated in the immortalized cells, which generally yielded higher-titer viral isolates from human and swine nasal swabs, supported the replication of isolates that failed to grow in Madin-Darby canine kidney (MDCK) cells, and resulted in fewer dominating mutations during viral passaging than MDCK cells.IMPORTANCE Robust in vitro culture systems for influenza virus are critically needed. MDCK cells, the most widely used cell line for influenza isolation and propagation, do not adequately model the respiratory tract. Therefore, many clinical isolates, both animal and human, are unable to be isolated and characterized, limiting our understanding of currently circulating influenza viruses. We have developed immortalized swine respiratory epithelial cells that retain the ability to differentiate and can support influenza replication and isolation. These cell lines can be used as additional tools to enhance influenza research and vaccine development.
Assuntos
Células Epiteliais/virologia , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/isolamento & purificação , Sistema Respiratório/virologia , Cultura de Vírus/métodos , Animais , Linhagem Celular , Cães , Humanos , Vírus da Influenza A/genética , Cinética , Células Madin Darby de Rim Canino , Suínos , Traqueia , Replicação ViralRESUMO
Despite high coverage with measles, mumps, and rubella vaccine in the United States, outbreaks of mumps occur in close contact settings such as schools, colleges, and camps. Starting in late 2015, outbreaks were reported from several universities, and by the end of 2017, greater than 13,800 cases had been reported nation-wide. In 2013, the CDC and the Association of Public Health Laboratories contracted four Vaccine Preventable Diseases Reference Centers (VPD-RCs) to perform real-time reverse transcription PCR (RT-qPCR) to detect mumps RNA in clinical samples and to determine the genotype. Twelve genotypes of mumps virus are currently recognized by the World Health Organization, and the standard protocol for genotyping requires sequencing the entire gene coding for the small hydrophobic (SH) protein. Phylogenetic analysis of the 1862 mumps samples genotyped from 2015 through 2017 showed that the overall diversity of genotypes detected was low. Only 0.8 % of the sequences were identified as genotypes C, H, J, or K, and 0.5 % were identified as vaccine strains in genotypes A or N, while most sequences (98.7 %) were genotype G. The majority of the genotype G sequences could be included into one of two large groups with identical SH sequences. Within genotype G, a small number of phylogenetically significant outlier sequences were associated with epidemiologically distinct chains of transmission. These results demonstrate that molecular and epidemiologic data can be used to track transmission pathways of mumps virus; however, the limited diversity of the SH sequences may be insufficient for resolving transmission in all outbreaks.
Assuntos
Surtos de Doenças , Vírus da Caxumba/genética , Caxumba/epidemiologia , Proteínas Virais/genética , Variação Genética , Genótipo , Humanos , RNA Viral/genética , Estados Unidos/epidemiologiaRESUMO
Residents of long-term care facilities (LCTFs) have high morbidity and mortality associated with acute respiratory infections (ARIs). Limited information exists on the virology of ARI in LTCFs, where virological testing is reactive. We report on findings of a surveillance feasibility substudy from a larger prospective trial of introducing rapid influenza diagnostic testing (RIDT) at 10 Wisconsin LTCFs. Any resident with symptoms consistent with ARI had a nasal swab specimen collected for RIDT by staff. Following RIDT, the residual swab was placed into viral transport medium and tested for influenza using Reverse transcription polymerase chain reaction, and for 20 pathogens using a multiplex polymerase chain reaction respiratory pathogen panel. Numbers of viruses in each of 7 categories (influenza A, influenza B, coronaviruses, human metapneumovirus, parainfluenza, respiratory syncytial virus, and rhinovirus/enterovirus) across the 3 years were compared using χ2. Totals of 160, 215, and 122 specimens were collected during 2016â2017, 2017â2018, and 2018â2019, respectively. Respiratory pathogen panel identified viruses in 54.8% of tested specimens. Influenza A (19.2%), influenza B (12.6%), respiratory syncytial virus (15.9%), and human metapneumovirus (20.9%) accounted for 69% of all detections, whereas coronaviruses (17.2%), rhinovirus/enterovirus (10.5%) and parainfluenza (3.8%) were less common. The distribution of viruses varied significantly across the 3 years (χ2 = 71.663; df = 12; P < .001). Surveillance in LTCFs using nasal swabs collected for RIDT is highly feasible and yields high virus identification rates. Significant differences in virus composition occurred across the 3 study years. Simple approaches to surveillance may provide a more comprehensive assessment of respiratory viruses in LTCF settings.
Assuntos
Infecções Respiratórias , Vírus , Humanos , Lactente , Assistência de Longa Duração , Estudos Prospectivos , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Wisconsin/epidemiologiaRESUMO
The Wisconsin Clinical Laboratory Network (WCLN) at the University of Wisconsin-Madison is a partnership of 138 clinical and public health laboratories (as of February 2019) coordinated by the Wisconsin State Laboratory of Hygiene. This article describes the WCLN, its current activities, and lessons learned through this partnership. A laboratory technical advisory group, which consists of representatives from clinical laboratories, provides clinical laboratory perspective to the WCLN and fosters communication among laboratories. Activities and resources available through the WCLN include annual regional meetings, annual technical workshops, webinars, an email listserv, laboratory informational messages, in-person visits by a WCLN coordinator to clinical laboratories, and laboratory-based surveillance data and summaries distributed by the Wisconsin State Laboratory of Hygiene. One challenge to maintaining the WCLN is securing continual funding for network activities. Key lessons learned from this partnership of more than 20 years include the importance of in-person meetings, the clinical perspective of the laboratory technical advisory group, and providing activities and resources to clinical laboratories to foster sharing of data and clinical specimens for public health surveillance and outbreak response.
Assuntos
Laboratórios/organização & administração , Vigilância em Saúde Pública , Saúde Pública , Parcerias Público-Privadas , Comportamento Cooperativo , Humanos , Laboratórios/economia , Estudos de Casos Organizacionais , Saúde Pública/economia , Saúde Pública/normas , WisconsinRESUMO
Cocirculation of varying influenza types, strains, and lineages allows coinfection and intra-season sequential infection, although a same-strain sequential infection has not been previously described. This case report describes the first known case of sequential laboratory-confirmed influenza A (H3N2) infections in a child within one season.
Assuntos
Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/diagnóstico , Estações do Ano , Criança , Família , Feminino , Genoma Viral , Voluntários Saudáveis , Humanos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/transmissão , Vacinação , Sequenciamento Completo do GenomaRESUMO
Background: During the 2014-2015 US influenza season, 320 cases of non-mumps parotitis (NMP) among residents of 21 states were reported to the Centers for Disease Control and Prevention (CDC). We conducted an epidemiologic and laboratory investigation to determine viral etiologies and clinical features of NMP during this unusually large occurrence. Methods: NMP was defined as acute parotitis or other salivary gland swelling of >2 days duration in a person with a mumps- negative laboratory result. Using a standardized questionnaire, we collected demographic and clinical information. Buccal samples were tested at the CDC for selected viruses, including mumps, influenza, human parainfluenza viruses (HPIVs) 1-4, adenoviruses, cytomegalovirus, Epstein-Barr virus (EBV), herpes simplex viruses (HSVs) 1 and 2, and human herpes viruses (HHVs) 6A and 6B. Results: Among the 320 patients, 65% were male, median age was 14.5 years (range, 0-90), and 67% reported unilateral parotitis. Commonly reported symptoms included sore throat (55%) and fever (48%). Viruses were detected in 210 (71%) of 294 NMP patients with adequate samples for testing, ≥2 viruses were detected in 37 samples, and 248 total virus detections were made among all samples. These included 156 influenza A(H3N2), 42 HHV6B, 32 EBV, 8 HPIV2, 2 HPIV3, 3 adenovirus, 4 HSV-1, and 1 HSV-2. Influenza A(H3N2), HHV6B, and EBV were the most frequently codetected viruses. Conclusions: Our findings suggest that, in addition to mumps, clinicians should consider respiratory viral (influenza) and herpes viral etiologies for parotitis, particularly among patients without epidemiologic links to mumps cases or outbreaks.
Assuntos
Influenza Humana/complicações , Influenza Humana/epidemiologia , Parotidite/virologia , Vírus/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Caxumba , Parotidite/epidemiologia , Faringite/virologia , Estações do Ano , Inquéritos e Questionários , Estados Unidos/epidemiologia , Adulto JovemRESUMO
INTRODUCTION: The goal of public health infectious disease surveillance systems is to provide accurate laboratory results in near-real time. When it comes to influenza surveillance, most current systems are encumbered with inherent delays encountered in the real-life chaos of medical practice. To combat this, we implemented and tested near-real-time surveillance using a rapid influenza detection test (RIDT) coupled with immediate, wireless transmission of results to public health entities. METHODS: A network of 19 primary care clinics across Wisconsin were recruited, including 4 sites already involved in ongoing influenza surveillance and 15 sites that were new to surveillance activities. Each site was provided with a Quidel Sofia Influenza A+B RIDT analyzer attached to a wireless router. Influenza test results, along with patient age, were transmitted immediately to a cloud-based server, automatically compiled, and forwarded to the surveillance team daily. Weekly counts of positive influenza A and B cases were compared with positive polymerase chain reaction (PCR) detections from an independent surveillance system within the state. RESULTS: Following Institutional Review Board (IRB) and institutional approvals, we recruited 19 surveillance sites, installed equipment, and trained staff within 4 months. Of the 1119 cases tested between September 15, 2013 and June 28, 2014, 316 were positive for influenza. The system provided early detection of the influenza outbreak in Wisconsin. The influenza peak between January 12 and 25, 2014, as well as the epidemic curve, closely matched that derived from the established PCR laboratory network (r = 0.927; P < .001). CONCLUSIONS: A network of influenza RIDTs with wireless transmission of results approximated the long-sought-after goal of real-time influenza surveillance. Results from the initial year strongly support this approach to highly accurate and timely influenza surveillance.
Assuntos
Surtos de Doenças/prevenção & controle , Monitoramento Epidemiológico , Influenza Humana/diagnóstico , Atenção Primária à Saúde/organização & administração , Estudos de Viabilidade , Humanos , Influenza Humana/epidemiologia , Disseminação de Informação/métodos , Projetos Piloto , Atenção Primária à Saúde/métodos , Fatores de Tempo , Tecnologia sem Fio , Wisconsin/epidemiologiaRESUMO
Real-time PCR methodology can be applied to rapidly and accurately detect influenza viruses. During times of surge testing or enhanced pandemic surveillance, public health laboratories (PHLs) may experience overwhelming demand for testing, even while the prevalence of positive specimens remains low. To improve laboratory capacity and testing efficiency during surges, we evaluated whether nasopharyngeal (NP)/throat swab specimens can be pooled and tested for the presence of the 2009 H1N1 influenza virus without a reduction in sensitivity. Pools of 10 specimens were extracted and concentrated upon elution on the MagNA Pure LC instrument, and real-time PCR was performed on the Applied Biosystems 7500 Fast platform, using the CDC swine influenza virus real-time RT-PCR detection panel (rRT-PCR swine flu panel). Specimens in positive pools were singly re-extracted and retested by PCR to identify individual positive samples. Initial studies showed that spiking a pool of nine negative specimens (100 µl each) or 900 µl of virus transport medium with 100 µl of a positive clinical specimen caused no loss of sensitivity by rRT-PCR testing. Pools containing either multiple positive specimens or specimens positive for other respiratory viruses also showed no negative effect on crossing threshold (C(T)) values. To test the robustness of the pooling protocol, a panel of 50 blinded samples was sent to three PHLs and tested in five pools of 10. All PHLs correctly identified the positive specimens. This study demonstrates the feasibility of using a pooling strategy to increase capacity and conserve resources during surge testing and periods of enhanced influenza surveillance when the prevalence is low.
Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Nasofaringe/virologia , Faringe/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Manejo de Espécimes/métodos , Humanos , Influenza Humana/virologia , Sensibilidade e Especificidade , Virologia/métodosRESUMO
The role of the public health laboratory (PHL) in support of public health response has expanded beyond testing to include a number of other core functions, such as emergency response, training and outreach, communications, laboratory-based surveillance, and laboratory data management. These functions can only be accomplished by a network that includes public health and other agency laboratories and clinical laboratories. It is a primary responsibility of the PHL to develop and maintain such a network. In this article, we present practical recommendations-based on 17 years of network development experience-for the development of statewide laboratory networks. These recommendations, and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of laboratory networks will enhance each state's public health system and is critical to the development of a robust national Laboratory Response Network.
Assuntos
Relações Interinstitucionais , Laboratórios/organização & administração , Vigilância da População , United States Public Health Service/organização & administração , Humanos , Laboratórios/normas , Estados Unidos , United States Public Health Service/normas , WisconsinRESUMO
Influenza A viruses cause recurrent outbreaks at local or global scale with potentially severe consequences for human health and the global economy. Recently, a new strain of influenza A virus was detected that causes disease in and transmits among humans, probably owing to little or no pre-existing immunity to the new strain. On 11 June 2009 the World Health Organization declared that the infections caused by the new strain had reached pandemic proportion. Characterized as an influenza A virus of the H1N1 subtype, the genomic segments of the new strain were most closely related to swine viruses. Most human infections with swine-origin H1N1 influenza viruses (S-OIVs) seem to be mild; however, a substantial number of hospitalized individuals do not have underlying health issues, attesting to the pathogenic potential of S-OIVs. To achieve a better assessment of the risk posed by the new virus, we characterized one of the first US S-OIV isolates, A/California/04/09 (H1N1; hereafter referred to as CA04), as well as several other S-OIV isolates, in vitro and in vivo. In mice and ferrets, CA04 and other S-OIV isolates tested replicate more efficiently than a currently circulating human H1N1 virus. In addition, CA04 replicates efficiently in non-human primates, causes more severe pathological lesions in the lungs of infected mice, ferrets and non-human primates than a currently circulating human H1N1 virus, and transmits among ferrets. In specific-pathogen-free miniature pigs, CA04 replicates without clinical symptoms. The assessment of human sera from different age groups suggests that infection with human H1N1 viruses antigenically closely related to viruses circulating in 1918 confers neutralizing antibody activity to CA04. Finally, we show that CA04 is sensitive to approved and experimental antiviral drugs, suggesting that these compounds could function as a first line of defence against the recently declared S-OIV pandemic.
Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Suínos/virologia , Animais , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , Linhagem Celular , Cães , Feminino , Furões/virologia , Proteína HN/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macaca fascicularis/imunologia , Macaca fascicularis/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Doenças dos Primatas/patologia , Doenças dos Primatas/virologia , Doenças dos Suínos/patologia , Doenças dos Suínos/virologia , Porco Miniatura/virologia , Replicação ViralRESUMO
The need for effective influenza antiviral susceptibility surveillance methods has increased due to the emergence of near-universal adamantane resistance in influenza A/H3N2 viruses during the 2005-2006 season and the appearance of oseltamivir resistance in the influenza A/H1N1 virus subtype during the 2007-2008 season. The two classes of influenza antivirals, the neuraminidase inhibitors (NAIs) and the adamantanes, are well characterized, as are many mutations that can confer resistance to these drugs. Adamantane resistance is imparted mainly by a S31N mutation in the matrix gene, while NAI resistance can result from a number of mutations in the neuraminidase gene. During the 2007-2008 season, a neuraminidase mutation (H274Y) conferring resistance to the NAI oseltamivir emerged worldwide in the A/H1N1 virus subtype. Surveillance methodology and data from New York (NY) and Wisconsin (WI) for the 2006-2007 and 2007-2008 influenza seasons are presented. We used an existing pyrosequencing method (R. A. Bright et al., Lancet 366:1175-1181, 2005) and a modified version of this method for detection of adamantane resistance mutations. For NAI resistance mutation detection, we used a mutation-specific pyrosequencing technique and developed a neuraminidase gene dideoxy sequencing method. Adamantane resistance in the A/H3N2 virus samples was 100% for 2007-2008, similar to the 99.8% resistance nationwide as reported by the CDC. Adamantane resistance was found in only 1.2% of NY and WI A/H1N1 virus samples, compared to that found in 10.8% of samples tested nationwide as reported by the CDC. Influenza A/H1N1 virus H274Y mutants were found in 11.1% of NY samples for 2007-2008, a level comparable to the 10.9% nationwide level reported by the CDC; in contrast, mutants were found in 17.4% of WI samples. These results indicate the need for regional influenza antiviral surveillance.
Assuntos
Adamantano/farmacologia , Antivirais/farmacologia , Farmacorresistência Viral , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Influenza Humana/virologia , Testes de Sensibilidade Microbiana/métodos , Substituição de Aminoácidos/genética , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Mutação de Sentido Incorreto , Neuraminidase/genética , New York , RNA Viral/genética , Análise de Sequência de DNA , Proteínas Virais/genética , WisconsinRESUMO
RATIONALE: Virus-induced wheezing episodes in infancy often precede the development of asthma. Whether infections with specific viral pathogens confer differential future asthma risk is incompletely understood. OBJECTIVES: To define the relationship between specific viral illnesses and early childhood asthma development. METHODS: A total of 259 children were followed prospectively from birth to 6 years of age. The etiology and timing of specific viral wheezing respiratory illnesses during early childhood were assessed using nasal lavage, culture, and multiplex reverse transcriptase-polymerase chain reaction. The relationships of these virus-specific wheezing illnesses and other risk factors to the development of asthma were analyzed. MEASUREMENTS AND MAIN RESULTS: Viral etiologies were identified in 90% of wheezing illnesses. From birth to age 3 years, wheezing with respiratory syncytial virus (RSV) (odds ratio [OR], 2.6), rhinovirus (RV) (OR, 9.8), or both RV and RSV (OR , 10) was associated with increased asthma risk at age 6 years. In Year 1, both RV wheezing (OR, 2.8) and aeroallergen sensitization (OR, 3.6) independently increased asthma risk at age 6 years. By age 3 years, wheezing with RV (OR, 25.6) was more strongly associated with asthma at age 6 years than aeroallergen sensitization (OR, 3.4). Nearly 90% (26 of 30) of children who wheezed with RV in Year 3 had asthma at 6 years of age. CONCLUSIONS: Among outpatient viral wheezing illnesses in infancy and early childhood, those caused by RV infections are the most significant predictors of the subsequent development of asthma at age 6 years in a high-risk birth cohort.