Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117562

RESUMO

The transfer of an oxygen atom from carbon dioxide (CO2) to a transition metal cation in the gas phase offers atomic level insights into single-atom catalysis for CO2 activation. Given that these reactions often involve open-shell transition metals, they may proceed through intersystem crossing between different spin manifolds. However, a definitive understanding of such spin-forbidden reaction requires dynamical calculations on multiple global potential energy surfaces (PESs) coupled by spin-orbit couplings. In this work, we report global PESs and spin-orbit couplings for three low-lying spin (quintet, triplet, and singlet) states for the reaction between the niobium cation (Nb+) and CO2, which are used to investigate the nonadiabatic reaction dynamics and kinetics. Comparison with experimental data of kinetics and collision dynamics shows satisfactory agreement. This reaction is found to be very similar to that between Ta+ + CO2. Specifically, our theoretical findings suggest that the rate-limiting step in this reaction is intersystem crossing, rather than potential barriers.

2.
J Phys Chem A ; 128(28): 5668-5675, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38968412

RESUMO

Kinetics of the lanthanide cations (Ln+ = La+-Lu+ excluding Pm+) reacting with molecular oxygen were measured in a selected-ion flow tube apparatus from 300 to 600 K. Where exothermic, these reactions occur efficiently, producing LnO+ + O. The reactions display positive temperature dependences consistent with Arrhenius equation behavior and show small activation energies (0-2 kJ mol-1) that are strongly correlated to promotion energies of the Ln+ atoms. Reanalysis of literature data on neutral Ln + O2 reactions show a similar correlation with slightly larger activation energies (0-10 kJ mol-1). The data are explained by a common mechanism controlling oxidation by molecular oxygen in these systems, as well as in gas-phase reactions of transition metal and posttransition metal cluster anions, neutral clusters deposited on surfaces, and for oxygen incident on metal surfaces. It is posited that across these systems, the height of an early barrier along the reaction coordinate is predictable based on knowledge of the electronic states of the reactants and may be used to either promote or inhibit oxygen activation.

3.
J Am Chem Soc ; 146(20): 14182-14193, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38741473

RESUMO

The activation of carbon dioxide (CO2) by a transition-metal cation in the gas phase is a unique model system for understanding single-atom catalysis. The mechanism of such reactions is often attributed to a "two-state reactivity" model in which the high-energy barrier of a spin state correlating with ground-state reactants is avoided by intersystem crossing (ISC) to a different spin state with a lower barrier. However, such a "spin-forbidden" mechanism, along with the corresponding dynamics, has seldom been rigorously examined theoretically, due to the lack of global potential energy surfaces (PESs). In this work, we report full-dimensional PESs of the lowest-lying quintet, triplet, and singlet states of the TaCO2+ system, machine-learned from first-principles data. These PESs and the corresponding spin-orbit couplings enable us to provide an extensive theoretical characterization of the dynamics and kinetics of the reaction between the tantalum cation (Ta+) and CO2, which have recently been investigated experimentally at high collision energies using crossed beams and velocity map imaging, as well as at thermal energies using a selected-ion flow tube apparatus. The multistate quasi-classical trajectory simulations with surface hopping reproduce most of the measured product translational and angular distributions, shedding valuable light on the nonadiabatic reaction dynamics. The calculated rate coefficients from 200 to 600 K are also in good agreement with the latest experimental measurements. More importantly, these calculations revealed that the reaction is controlled by intersystem crossing, rather than potential barriers.

4.
J Chem Phys ; 160(11)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38501477

RESUMO

The rate constant of the associative ionization reaction N(2P) + O(3P) → NO+ + e- was measured using a flow tube apparatus. A flowing afterglow source was used to produce an ion/electron plasma containing a mixture of ions, including N2+, N3+, and N4+. Dissociative recombination of these species produced a population of nitrogen atoms, including N(2P). Charged species were rejected from the flow tube using an electrostatic grid, subsequent to which oxygen atoms were introduced, produced either using a discharge of helium and oxygen or via the titration of nitrogen atoms with NO. Only the title reaction can produce the NO+ observed after the introduction of O atoms. The resulting rate constant (8 ± 5 ×10-11 cm3 s-1) is larger than previously reported N(2P) + O disappearance rate constants (∼2 × 10-11 cm3 s-1). The possible errors in this or previous experiments are discussed. It is concluded that the N(2P) + O(3P) reaction proceeds almost entirely by associative ionization, with quenching to the 2D or 4S states as only minor processes.

5.
Phys Chem Chem Phys ; 26(11): 8670-8680, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38437035

RESUMO

The reactions of Ta+ and Nb+ with CO2 proceed only by a highly efficient oxygen atom transfer reaction to the respective oxide at room temperature in the gas phase. Although the product spin states are not determined, thermochemistry dictates that they must be different from ground state quintet Ta+ and Nb+, implying that intersystem crossing (ISC) has occurred. Recent reactive scattering experiments found dominant indirect dynamics for the reaction with Ta+ hinting at a bottleneck along the reaction path. The question on the nature of the bottleneck, whether it involves a crossing point or a transition state, could not be finally answered because theory located both close to each other. Here, we aim at shedding further light onto the impact of intersystem crossing on the reaction dynamics and ultimately the reactivity of transition metal ion reactions in the gas phase. We employ a combination of thermal kinetics for Ta+ and Nb+ with CO2 using a selected-ion flow tube (SIFT) apparatus and differential scattering cross sections for Nb+ + CO2 from crossed-beam velocity map imaging. The reaction with niobium again shows dominant indirect dynamics and in general very similar dynamics compared to Ta+ + CO2. At thermal energies, both reactions show sub-collisional rate constants with small negative temperature dependencies. Experiments are complemented by high level quantum chemical calculations of the minimum energy pathway. Statistical modelling well-reproduces the experimental thermal rate constants, and suggests that the Nb+ reaction is rate-limited by the intersystem crossing at thermal energies.

6.
J Phys Chem A ; 128(2): 439-448, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38175962

RESUMO

Rate constants and product branching fractions were measured from 300-600 K for Fen- + O2 (n = 2-17) and for 300-500 K for FexNiy- + O2 (x + y = 3-9) using a selected-ion flow tube (SIFT) apparatus. Rate constants for 46 species are reported. All rate constants increased with increasing temperature, and several were in excess of the Langevin-Gioumousis-Stevenson (LGS) capture rate at elevated temperatures. As with previously studied transition metal anion oxidation reactions, the collision limit is treated as the sum of the LGS limit along with a hard-sphere contribution, allowing for determination of activation energies. These values are compared to each other along with previous results for Nin-. Measured rate constants for all three series (Fen-, Nin-, and FexNy-) vary over a relatively narrow range (1-5 × 10-10 cm3 s-1 at 300 K) being at least 15% of the collision rate constant. All reaction rate constants increase with temperature, described by small activation energies of 0.5-4 kJ mol-1. The data are consistent with an anticorrelation between the electron binding energy and rate constant, previously noted in other systems. The Fen- reaction produces a larger population of higher energy electrons than do the Nin- reactions, with FexNiy- producing an intermediate amount. The results suggest that the overall rate constant is limited by a small energetic barrier located at a large internuclear distance where electrostatic forces dominate, causing the potentials to be similar across systems, while the product formation is determined by the shorter-range, valence portion of the potential, which varies widely between systems.

7.
Phys Rev Lett ; 132(2): 023001, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38277613

RESUMO

We have studied the mutual neutralization reaction of vibronically cold NO^{+} with O^{-} at a collision energy of ≈0.1 eV and under single-collision conditions. The reaction is completely dominated by production of three ground-state atomic fragments. We employ product-momentum analysis in the framework of a simple model, which assumes the anion acts only as an electron donor and the product neutral molecule acts as a free rotor, to conclude that the process occurs in a two-step mechanism via an intermediate Rydberg state of NO which subsequently fragments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA