Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37998011

RESUMO

The spionid worm Pygospio elegans is a convenient model for regeneration studies due to its accessibility, high tolerance, and ease of maintenance in laboratory culture. This article presents the findings regarding neuroregeneration and the structure of the nervous system based on antibody labeling of serotonin and FMRFamide. We propose the main stages of central nervous system neurogenesis during regeneration: single nerve fibers, a loop structure, and neurons in the brain and segmental ganglia. Nerve fibers and receptor cells of the peripheral nerve system can be traced to different stages of regeneration. We also provide a comparison of our results with previous data on the structure and regeneration of the nervous system based on antibody labeling of catecholamines, gamma-aminobutyric acid, and histamine and with the results for other annelids.

2.
BMC Zool ; 7(1): 58, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37170300

RESUMO

BACKGROUND: In recent two decades, studies of the annelid nervous systems were revolutionized by modern cell labeling techniques and state-of-the-art microscopy techniques. However, there are still huge gaps in our knowledge on the organization and functioning of their nervous system. Most of the recent studies have focused on the distribution of serotonin and FMRFamide, while the data about many other basic neurotransmitters such as histamine (HA) and gamma-aminobutyric acid (GABA) are scarce. RESULTS: Using immunohistochemistry and confocal microscopy we studied the distribution of histamine and gamma-aminobutyric acid in the nervous system of a spionid annelid Pygospio elegans and traced their redevelopment during reparative regeneration. Both neurotransmitters show specific patterns in central and peripheral nervous systems. HA-positive cells are concentrated mostly in the brain, while GABA-positive cell somata contribute equally to brain and segmental ganglia. Some immunoreactive elements were found in peripheral nerves. Both substances were revealed in high numbers in bipolar sensory cells in the palps. The first signs of regenerating HAergic and GABAergic systems were detected only by 3 days after the amputation. Further redevelopment of GABAergic system proceeds faster than that of HAergic one. CONCLUSIONS: Comparisons with other annelids and mollusks examined in this respect revealed a number of general similarities in distribution patterns of HAergic and GABAergic cells in different species. Overall, the differences in the full redevelopment of various neurotransmitters correlate with neuronal development during embryogenesis. Our results highlight the importance of investigating the distribution of different neurotransmitters in comparative morphological and developmental studies.

3.
Gynecol Endocrinol ; 33(9): 737-740, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28617148

RESUMO

It is well documented that aneuploidy rate in preimplantation embryos increases with the mother's age, and at the same time the number of oocytes diminishes. Consequently, for patients of advanced maternal age two options are available to overcome these limitations: use of oocytes from young donors, or use of own oocytes coupled with preimplantation genetic screening (PGS) for 24 chromosomes. However, it is not clear which strategy might be more effective. The aim of this retrospective study was to evaluate outcomes of IVF cycles coupled with transfer of vitrified embryos from donor or autologous oocytes, both with or without PGS. Our results demonstrate that while after PGS clinical pregnancy, twin pregnancy and spontaneous abortion rates are similar for embryos from donor and autologous oocytes, these rates are dramatically worse in all cycles without PGS. Therefore, PGS can be recommended as a screening method to all patients of advanced maternal age even when donor oocytes are used.


Assuntos
Hibridização Genômica Comparativa/métodos , Transferência Embrionária , Fertilização in vitro/métodos , Resultado da Gravidez , Diagnóstico Pré-Implantação/métodos , Adulto , Fatores Etários , Implantação do Embrião , Feminino , Humanos , Idade Materna , Doação de Oócitos , Gravidez , Estudos Retrospectivos , Vitrificação
4.
Front Zool ; 12: 28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26464575

RESUMO

BACKGROUND: Though some elements of the bryozoan nervous system were discovered 180 years ago, few studies of their neuromorphology have been undertaken since that time. As a result the general picture of the bryozoan nervous system structure is incomplete in respect of details and fragmentary in respect of taxonomic coverage. RESULTS: The nervous system of three common European freshwater bryozoans - Cristatella mucedo, Plumatella repens (both with a horseshoe-shaped lophophore) and Fredericella sultana (with a circular lophophore) had numerous differences in the details of the structure but the general neuroarchitecture is similar. The nervous system of the zooid consists of the cerebral ganglion, a circumpharyngeal ring and lophophoral nerve tracts (horns), both sending numerous nerves to the tentacles, and the nerve plexuses of the body wall and of the gut. A number of the important details (distal branching of the additional radial nerve, pattern of distribution of nerve cells and neurites in the ganglion, etc.) were described for the first time. The number and position of the tentacle nerves in Cristatella mucedo was ascertained and suggestions about their function were made. The revealed distribution of various neuromediators in the nervous system allowed us to suggest functional affinities of some major nerves. CONCLUSIONS: Despite the basic similarity, both the ganglion and the lophophore nervous system in Phylactolaemata have a more complex structure than in marine bryozoans (classes Gymnolaemata and Stenolaemata). First of all, their neuronal network has a denser and more complex branching pattern: most phylactolaemates have two large nerve tracts associated with lophophore arms, they have more nerves in the tentacles, additional and basal branches emitting from the main radial nerves, etc. This, in part, can be explained by the horseshoe shape of the lophophore and a larger size of the polypide in freshwater species. The structure of the nervous system in Fredericella sultana suggests that it underwent a secondary simplification following the reduction of the lophophore arms. Colony locomotion in Cristatella mucedo is based on co-ordinated activity of two perpendicular muscle layers of the sole and the plexus of motor neurons sandwiched between them. The trigger of this activity and the co-ordination mechanism remain enigmatic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA