RESUMO
Drug resistance (DR) in Mycobacterium tuberculosis is the main problem in fighting tuberculosis (TB). This pathogenic bacterium has several types of DR implementation: acquired and intrinsic DR. Recent studies have shown that exposure to various antibiotics activates multiple genes, including genes responsible for intrinsic DR. To date, there is evidence of the acquisition of resistance at concentrations well below the standard MICs. In this study, we aimed to investigate the mechanism of intrinsic drug cross-resistance induction by subinhibitory concentrations of antibiotics. We showed that pretreatment of M. smegmatis with low doses of antibiotics (kanamycin and ofloxacin) induced drug resistance. This effect may be caused by a change in the expression of transcriptional regulators of the mycobacterial resistome, in particular the main transcriptional regulator whiB7.
RESUMO
The emergence and spread of drug-resistant Mycobacterium tuberculosis strains (including MDR, XDR, and TDR) force scientists worldwide to search for new anti-tuberculosis drugs. We have previously reported a number of imidazo[1,2-b][1,2,4,5]tetrazines - putative inhibitors of mycobacterial eukaryotic-type serine-threonine protein-kinases, active against M. tuberculosis. Whole genomic sequences of spontaneous drug-resistant M. smegmatis mutants revealed four genes possibly involved in imidazo[1,2-b][1,2,4,5]tetrazines resistance; however, the exact mechanism of resistance remain unknown. We used different approaches (construction of targeted mutants, overexpression of the wild-type (w.t.) and mutant genes, and gene-expression studies) to assess the role of the previously identified mutations. We show that mutations in MSMEG_1380 gene lead to overexpression of the mmpS5-mmpL5 operon in M. smegmatis, thus providing resistance to imidazo[1,2-b][1,2,4,5]tetrazines by increased efflux through the MmpS5-MmpL5 system, similarly to the mechanisms of resistance described for M. tuberculosis and M. abscessus. Mycobacterial MmpS5-MmpL5 transporters should be considered as an MDR-efflux system and they should be taken into account at early stages of anti-tuberculosis drug development.
RESUMO
Here, we report the draft genome sequences of 15 Mycobacterium tuberculosis isolates of the Beijing-B0/W-148 sublineage that carry a 7-bp insertion within the pks15 gene, which leads to the synthesis of Pks15/1 fusion protein. Pks15/1 is involved in phenolglycolipid synthesis and biofilm formation, thus potentially contributing to the B0/W-148 lineage's enhanced virulence and drug resistance.
RESUMO
We report the draft genome sequences of three Mycobacterium tuberculosis isolates belonging to the B0/N-90 sublineage, EKB34, EKB53, and EKB79. The B0/N-90 sublineage belongs to the prevalent (in Russia) and highly virulent Beijing-B0/W148 sublineage. Isolates EKB34 and EKB79 were obtained from people with immune deficiency.
RESUMO
Tuberculosis (TB) has recently become the leading killer among infectious diseases. Multidrug and extensively drug-resistant Mycobacterium tuberculosis strains urge the need to develop anti-TB drugs with a novel mechanism of action. We describe synthesis of 22 novel imidazo[1,2-b][1,2,4,5]tetrazine derivatives with different substituents at C(3) and C(6) positions, and their antimycobacterial activity in vitro. 8 compounds show activity as potential serine/threonine protein kinase (STPK) inhibitors in M. smegmatis aphVIII+ test-system, which is characteristic for this class. 3 compounds out of 5 most active STPK inhibitors have a prominent minimal inhibitory concentration on M. tuberculosis H37Rv of 1⯵g/ml. We were able to obtain M. smegmatis mc2 155 mutants resistant to 4 compounds and show that they do not have cross resistance with other drugs, but have a common mechanism of resistance among these 4 imidazo[1,2-b][1,2,4,5]tetrazines. Compound 3h seems the most promising, combining a predicted STPK inhibitor activity, the lowest MIC on M. tuberculosis and a low frequency of drug resistant mutants' emergence.
Assuntos
Antituberculosos/farmacologia , Compostos Heterocíclicos com 2 Anéis/farmacologia , Imidazóis/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Eritromicina/farmacologia , Compostos Heterocíclicos com 2 Anéis/síntese química , Compostos Heterocíclicos com 2 Anéis/química , Imidazóis/síntese química , Imidazóis/química , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Ofloxacino/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Rifampina/farmacologiaRESUMO
Here, we report 12 draft genome sequences of mutant Mycolicibacterium smegmatis strains resistant to imidazo[1,2-b][1,2,4,5]tetrazines, which are antituberculosis drug candidates. We have identified 7 different mutations in the MSMEG_1380 gene, which encodes the AcrR/TetR_N transcriptional repressor, which may activate efflux-mediated resistance.
RESUMO
Although drug resistance in Mycobacterium tuberculosis is mainly caused by mutations in drug activating enzymes or drug targets, there is increasing interest in the possible role of efflux in causing drug resistance. Previously, efflux genes have been shown to be upregulated upon drug exposure or implicated in drug resistance in overexpression studies, but the role of mutations in efflux pumps identified in clinical isolates in causing drug resistance is unknown. Here we investigated the role of mutations in efflux pump Rv1258c (Tap) from clinical isolates in causing drug resistance in M. tuberculosis. We constructed point mutations V219A and S292L in Rv1258c in the chromosome of M. tuberculosis and the point mutations were confirmed by DNA sequencing. The susceptibility of the constructed M. tuberculosis Rv1258c mutants to different tuberculosis drugs was assessed using conventional drug susceptibility testing in 7H11 agar in the presence and absence of efflux pump inhibitor piperine. A C14-labeled PZA uptake experiment was performed to demonstrate higher efflux activity in the M. tuberculosis Rv1258c mutants. Interestingly, the V219A and S292L point mutations caused clinically relevant drug resistance to pyrazinamide (PZA), isoniazid (INH), and streptomycin (SM), but not to other drugs in M. tuberculosis. While V219A point mutation conferred low-level drug resistance, the S292L mutation caused a higher level of resistance. Efflux inhibitor piperine inhibited INH and PZA resistance in the S292L mutant but not in the V219A mutant. The S292L mutant had higher efflux activity for pyrazinoic acid (the active form of PZA) than the parent strain. We conclude that point mutations in the efflux pump Rv1258c in clinical isolates can confer clinically relevant drug resistance, including PZA resistance, and could explain some previously unaccounted drug resistance in clinical strains. Future studies need to take efflux mutations into consideration for improved detection of drug resistance in M. tuberculosis and address their role in affecting treatment outcome in vivo.
RESUMO
Resistance to pyrazinamide (PZA) may impact clinical outcome of anti-tuberculosis chemotherapy. PZA susceptibility testing using MGIT 960 is not reliable and little information is available on the prevalence of PZA resistance in Russia. A collection of 64 clinical isolates of Mycobacterium tuberculosis, including 35 multidrug resistant and extensively drug-resistant (MDR/XDR), was analyzed for PZA resistance using MGIT 960, Wayne test, and sequencing of PZA resistance genes pncA, rpsA and panD. In addition, we analyzed 519 MDR-TB strains for susceptibility to PZA by MGIT 960. Sequencing of pncA revealed 17 of 25 (68%) MDR strains and all 10 XDR strains harboring pncA mutations. A correlation of φ = 0.81 between MGIT 960 and pncA sequencing was observed. Mutations in rpsA and panD not associated with PZA resistance as defined by MGIT 960 were identified. We found 1 PZA-resistant strain without mutations in known PZA resistance genes. Almost 73% of MDR-TB strains isolated in Moscow, Russia, were PZA-resistant by MGIT 960 testing of 519 MDR-TB clinical isolates. Further studies are needed to determine the role of rpsA and panD mutations in possible low-level PZA resistance and to identify the molecular basis of new PZA resistance in the isolate without known PZA resistance mutations.