Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37630456

RESUMO

Livestock excrement is a major pollutant yielded from husbandry and it has been constantly imported into various related environments. Livestock excrement comprises a variety of microorganisms including certain units with health risks and these microorganisms are transferred synchronically during the management and utilization processes of livestock excrement. The livestock excrement microbiome is extensively affecting the microbiome of humans and the relevant environments and it could be altered by related environmental factors as well. The zoonotic microorganisms, extremely zoonotic pathogens, and antibiotic-resistant microorganisms are posing threats to human health and environmental safety. In this review, we highlight the main feature of the microbiome of livestock excrement and elucidate the composition and structure of the repertoire of microbes, how these microbes transfer from different spots, and they then affect the microbiomes of related habitants as a whole. Overall, the environmental problems caused by the microbiome of livestock excrement and the potential risks it may cause are summarized from the microbial perspective and the strategies for prediction, prevention, and management are discussed so as to provide a reference for further studies regarding potential microbial risks of livestock excrement microbes.

2.
Curr Res Microb Sci ; 3: 100133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909614

RESUMO

This study reports the diversity of cultivable endophytic bacteria associated with yellow iris (Iris pseudacorus L.) by using 16S rRNA gene analysis and their plant beneficial traits. The 16S rRNA sequence similarities of endophytic bacteria isolated from the leaves and roots of yellow iris showed that the isolates belonged to the genera Staphylococcus, Streptomyces, Variovorax, Pantoea, Paenibacillus, Bacillus, Janthinobacterium, Enterobacter, Brevibacterium, Agrobacterium, Rhizobium, Xanthomonas translucens, and Pseudomonas. The endophytic bacteria Pseudomonas gessardii HRT18, Brevibacterium frigoritolerans HRT8, Streptomyces atratus HRT13, and Bacillus toyonensis HST13 exhibited antimicrobial activity against five plant pathogenic fungi Fusarium, Rhizoctonia, Botrytis, Pythium, and Alternaria. They also demonstrated the capability to produce chitinase, protease, glucanase, lipase, HCN, and indole-3-acetic acid (IAA). Thirteen isolates (46%) produced IAA, and the most active IAA producers were Bacillus cereus, Agrobacterium tumefaciens, Agrobacterium vitis, Bacillus megaterium, and Bacillus aryabhattai. The IAA producing bacterial isolates stimulated root and shoot growth of garden cress. Our findings suggest that medicinal plants could be a promising source for isolating plant-beneficial bacteria that can be used to enhance the growth and protect plants against soil-borne pathogens.

3.
Plants (Basel) ; 11(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35161404

RESUMO

Numerous reports confirm the positive effect of biochar application on soil properties and plant development. However, the interaction between root-associated beneficial microbes and different types of biochar is not well understood. The objective of this study was to evaluate the plant growth of lettuce after the application of three types of biochar in loamy, sandy soil individually and in combination with plant-beneficial microbes. Furthermore, total microbial activity in rhizosphere soil of lettuce was measured by means of fluorescein diacetate (FDA) hydrolase and enzyme activities linked to carbon, nitrogen, and phosphorus cycling. We used three types of biochar: (i) pyrolysis char from cherry wood (CWBC), (ii) pyrolysis char from wood (WBC), and (iii) pyrolysis char from maize (MBC) at 2% concentration. Our results showed that pyrolysis biochars positively affected plant interaction with microbial inoculants. Plant dry biomass grown on soil amended with MBC in combination with Klebsiella sp. BS13 and Klebsiella sp. BS13 + Talaromyces purpureogenus BS16aPP inoculants was significantly increased by 5.8% and 18%, respectively, compared to the control plants. Comprehensively, interaction analysis showed that the biochar effect on soil enzyme activities involved in N and P cycling depends on the type of microbial inoculant. Microbial strains exhibited plant growth-promoting traits, including the production of indole 3-acetic-acid and hydrogen cyanide and phosphate-solubilizing ability. The effect of microbial inoculant also depends on the biochar type. In summary, these findings provide new insights into the understanding of the interactions between biochar and microbial inoculants, which may affect lettuce growth and development.

4.
AIMS Microbiol ; 7(3): 336-353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708176

RESUMO

Endophytes colonizing plant tissue play an essential role in plant growth, development, stress tolerance and plant protection from soil-borne diseases. In this study, we report the diversity of cultivable endophytic bacteria associated with marigold (Calendula officinalis L.) by using 16S rRNA gene analysis and their plant beneficial properties. A total of 42 bacterial isolates were obtained from plant tissues of marigold. They belonged to the genera Pantoea, Enterobacter, Pseudomonas, Achromobacter, Xanthomonas, Rathayibacter, Agrobacterium, Pseudoxanthomonas, and Beijerinckia. Among the bacterial strains, P. kilonensis FRT12, and P. rhizosphaerae FST5 showed moderate or vigorous inhibition against three tested plant pathogenic fungi, F. culmorum, F. solani and R. solani. They also demonstrated the capability to produce hydrolytic enzymes and indole-3-acetic acid (IAA). Five out of 16 isolates significantly stimulated shoot and root growth of marigold in a pot experiment. The present study reveals that more than half of the bacterial isolates associated with marigold (C. officinalis L.) provided antifungal activity against one or more plant pathogenic fungi. Our findings suggest that medicinal plants with antimicrobial activity could be a source for selecting microbes with antagonistic activity against fungal plant pathogens or with plant growth stimulating potential. These isolates might be considered as promising candidates for the improvement of plant health.

5.
Plants (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009054

RESUMO

The diversity of salt-tolerant cultivable endophytic bacteria associated with the halophyte New Zealand spinach (Tetragonia tetragonioides (Pall.) Kuntze) was studied, and their plant beneficial properties were evaluated. The bacteria isolated from leaves and roots belonged to Agrobacterium, Stenotrophomonas, Bacillus, Brevibacterium, Pseudomonas, Streptomyces, Pseudarthrobacter, Raoultella, Curtobacterium, and Pantoea. Isolates exhibited plant growth-promoting traits, including the production of a phytohormone (indole 3-acetic-acid), cell wall degrading enzymes, and hydrogen cyanide production. Furthermore, antifungal activity against the plant pathogenic fungi Fusarium solani, F. oxysporum, and Verticillium dahliae was detected. Ten out of twenty bacterial isolates were able to synthesize ACC deaminase, which plays a vital role in decreasing ethylene levels in plants. Regardless of the origin of isolated bacteria, root or leaf tissue, they stimulated plant root and shoot growth under 200 mM NaCl conditions. Our study suggests that halophytes such as New Zealand spinach are a promising source for isolating halotolerant plant-beneficial bacteria, which can be considered as potentially efficient biofertilizers in the bioremediation of salt-affected soils.

6.
Microorganisms ; 8(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244470

RESUMO

The effects of biochar on plant growth vary depending on the applied biochar type, study site environmental conditions, microbial species, and plant-microbial interactions. The objectives of the present study were therefore to assess 1) the response of growth parameters of lupin and root disease incidence to the application of three biochar types in a loamy sandy soil, and 2) the role of endophytic bacteria in biological control of root rot disease incidence in lupin after the amendment of soil with different biochar types. As biochar types we tested (i) hydrochar (HTC) from maize silage, (ii) pyrolysis char from maize (MBC), and (iii) pyrolysis char from wood (WBC) at three different concentrations (1%, 2%, and 3% of char as soil amendments). There were no significant effects in lupin shoot and root growth in soils amended with WBC at any of the concentrations. MBC did not affect plant growth except for root dry weight at 2% MBC. HTC char at 2% concentration, significantly increased the root dry weight of lupin by 54-75%, and shoot dry weight by 21-25%. Lupin plants grown in soil amended with 2% and 3% WBC and MBC chars showed 40-50% and 10-20% disease symptoms, respectively. Plants grown in soil without biochar and with HTC char were healthy, and no disease incidence occurred. Pseudomonas putida L2 and Stenotrophomonas pavanii L8 isolates demonstrated a disease reduction compared to un-inoculated plants under MBC and WBC amended soil that was infested with Fusarium solani.

7.
Microbiologyopen ; 8(9): e00850, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31058468

RESUMO

During the last five decades, the Aral Sea has gradually changed from a saline water body to a hypersaline lake. Microbial community inhabiting the Aral Sea has been through a succession and continuous adaptation during the last 50 years of increasing salinization, but so far, the microbial diversity has not been explored. Prokaryotic diversity of the Large Aral Sea using cultivation-independent methods based on determination of environmental 16S rRNA gene sequences revealed a microbial community related to typical marine or (hyper) saline-adapted Bacteria and Archaea. The archaeal sequences were phylogenetically affiliated with the order Halobacteriales, with a large number of operational taxonomic units constituting a novel cluster in the Haloferacaceae family. Bacterial community analysis indicated a higher diversity with representatives belonging to Proteobacteria, Actinobacteria and Bacteroidetes. Many members of Alphaproteobacteria and Gammaproteobacteria were affiliated with genera like Roseovarius, Idiomarina and Spiribacter which have previously been found in marine or hypersaline waters. The majority of the phylotypes was most closely related to uncultivated organisms and shared less than 97% identity with their closest match in GenBank, indicating a unique community structure in the Large Aral Sea with mostly novel species or genera.


Assuntos
Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Lagos/microbiologia , Microbiota , Água do Mar/microbiologia , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ambiental/genética , DNA Ambiental/isolamento & purificação , DNA Ribossômico/química , DNA Ribossômico/genética , Metagenômica , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Uzbequistão
8.
Front Microbiol ; 8: 1887, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033922

RESUMO

Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non-rhizobial endophytic bacteria from the root nodules of chickpea (Cicer arietinum L.), and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1, Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H2O2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani. This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA