Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(7): 231475, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39050719

RESUMO

Staphylococcus aureus, a prevalent component of the human microbiota, is associated with skin infections to life-threatening diseases, presenting challenges in treatment options and necessitating the development of effective treatments. This study integrated computational and in vitro approaches to identify promising phytocompounds with therapeutic potential. Staphopain B emerged as a target protein for its role in immune evasion, exhibiting stability during molecular dynamic simulation (MDS) with a root mean square deviation value of 2.376 Å. Screening 115 phytocompounds with antibacterial properties from the PubChem database identified 12 with drug-like properties, nine of which showed superior binding affinity to Staphopain B compared to a commercial antibiotic, doxycycline (-7.8 kcal mol-1). Notably, epoxyazadiradione and nimbolide displayed higher estimated free energy of binding scores (-7.91 and -7.93 kcal mol-1, respectively), indicating strong protein-ligand interactions. The root mean square fluctuation values for epoxyazadiradione and nimbolide were 1.097 and 1.034 Å, respectively, which was confirmed through MDS. Crude ethanolic extracts (100% and 70%) of neem (Azadirachta indica) leaves demonstrated narrow inhibition against the bacteria in comparison to doxycycline in the disc-diffusion assay. This study underscores the potential of phytocompounds as therapeutic agents against S. aureus; however, further in vitro experiments and testing of the phytocompounds in vivo are required.

2.
Int J Pept Res Ther ; 29(4): 60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251529

RESUMO

A vaccine is defined as a biologic preparation that trains the immune system, boosts immunity, and protects against a deadly microbial infection. They have been used for centuries to combat a variety of contagious illnesses by means of subsiding the disease burden as well as eradicating the disease. Since infectious disease pandemics are a recurring global threat, vaccination has emerged as one of the most promising tools to save millions of lives and reduce infection rates. The World Health Organization reports that immunization protects three million individuals annually. Currently, multi-epitope-based peptide vaccines are a unique concept in vaccine formulation. Epitope-based peptide vaccines utilize small fragments of proteins or peptides (parts of the pathogen), called epitopes, that trigger an adequate immune response against a particular pathogen. However, conventional vaccine designing and development techniques are too cumbersome, expensive, and time-consuming. With the recent advancement in bioinformatics, immunoinformatics, and vaccinomics discipline, vaccine science has entered a new era accompanying a modern, impressive, and more realistic paradigm in designing and developing next-generation strong immunogens. In silico designing and developing a safe and novel vaccine construct involves knowledge of reverse vaccinology, various vaccine databases, and high throughput techniques. The computational tools and techniques directly associated with vaccine research are extremely effective, economical, precise, robust, and safe for human use. Many vaccine candidates have entered clinical trials instantly and are available prior to schedule. In light of this, the present article provides researchers with up-to-date information on various approaches, protocols, and databases regarding the computational designing and development of potent multi-epitope-based peptide vaccines that can assist researchers in tailoring vaccines more rapidly and cost-effectively.

3.
Biomed Res Int ; 2023: 5469258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214084

RESUMO

SARS-CoV-2, a deadly coronavirus sparked COVID-19 pandemic around the globe. With an increased mutation rate, this infectious agent is highly transmissible inducing an escalated rate of infections and death everywhere. Hence, the discovery of a viable antiviral therapy option is urgent. Computational approaches have offered a revolutionary framework to identify novel antimicrobial treatment regimens and allow a quicker, cost-effective, and productive conversion into the health center by evaluating preliminary and safety investigations. The primary purpose of this research was to find plausible plant-derived antiviral small molecules to halt the viral entrance into individuals by clogging the adherence of Spike protein with human ACE2 receptor and to suppress their genome replication by obstructing the activity of Nsp3 (Nonstructural protein 3) and 3CLpro (main protease). An in-house library of 1163 phytochemicals were selected from the NPASS and PubChem databases for downstream analysis. Preliminary analysis with SwissADME and pkCSM revealed 149 finest small molecules from the large dataset. Virtual screening using the molecular docking scoring and the MM-GBSA data analysis revealed that three candidate ligands CHEMBL503 (Lovastatin), CHEMBL490355 (Sulfuretin), and CHEMBL4216332 (Grayanoside A) successfully formed docked complex within the active site of human ACE2 receptor, Nsp3, and 3CLpro, respectively. Dual method molecular dynamics (MD) simulation and post-MD MM-GBSA further confirmed efficient binding and stable interaction between the ligands and target proteins. Furthermore, biological activity spectra and molecular target analysis revealed that all three preselected phytochemicals were biologically active and safe for human use. Throughout the adopted methodology, all three therapeutic candidates significantly outperformed the control drugs (Molnupiravir and Paxlovid). Finally, our research implies that these SARS-CoV-2 protein antagonists might be viable therapeutic options. At the same time, enough wet lab evaluations would be needed to ensure the therapeutic potency of the recommended drug candidates for SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Simulação de Acoplamento Molecular , Pandemias , Ligantes , Enzima de Conversão de Angiotensina 2/metabolismo , Proteínas não Estruturais Virais/química , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA