Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(47): 53193-53205, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33186021

RESUMO

A method for the fabrication of flexible electrical circuits on polyaramid substrates is presented based on laser-induced carbonization followed by copper electroplating. Locally carbonized flexible sheets of polyaramid (Nomex), by laser radiation, create rough and highly porous microstructures that show a higher degree of graphitization than thermally carbonized Nomex sheets. The found recipe for laser-induced carbonization creates conductivities of up to ∼45 S cm-1, thereby exceeding that observed for thermally pyrolyzed materials (∼38 S cm-1) and laser carbon derived from Kapton using the same laser wavelength (∼35 S cm-1). The electrical conductivity of the carbonized tracks was further improved by electroplating with copper. To demonstrate the electrical performance, fabricated circuits were tested and improvement of the sheet resistance was determined. Copper films exhibit antimicrobial activity and were used to fabricate customized flexible antibacterial coatings. The integration of laser carbonization and electroplating technologies in a polyaramid substrate points to the development of customized circuit designs for smart textiles operating in high-temperature environments.


Assuntos
Antibacterianos/química , Cobre/química , Lasers , Nylons/química , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Carbono/química , Cobre/farmacologia , Galvanoplastia , Escherichia coli/efeitos dos fármacos
2.
Sci Rep ; 8(1): 16282, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389995

RESUMO

Glassy carbon is a graphene-rich form of elemental carbon obtained from pyrolysis of polymers, which is composed of three-dimensionally arranged, curved graphene fragments alongside fractions of disordered carbon and voids. Pyrolysis encompasses gradual heating of polymers at ≥ 900 °C under inert atmosphere, followed by cooling to room temperature. Here we report on an experimental method to perform in situ high-resolution transmission electron microscopy (HR-TEM) for the direct visualization of microstructural evolution in a pyrolyzing polymer in the 500-1200 °C temperature range. The results are compared with the existing microstructural models of glassy carbon. Reported experiments are performed at 80 kV acceleration voltage using MEMS-based heating chips as sample substrates to minimize any undesired beam-damage or sample preparation induced transformations. The outcome suggests that the geometry, expansion and atomic arrangement within the resulting graphene fragments constantly change, and that the intermediate structures provide important cues on the evolution of glassy carbon. A complete understanding of the pyrolysis process will allow for a general process tuning specific to the precursor polymer for obtaining glassy carbon with pre-defined properties.

3.
Nanoscale ; 9(35): 12835-12842, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28799608

RESUMO

Graphitization of polymers is an effective way to synthesize nanocrystalline graphene on different substrates with tunable shape, thickness and properties. The catalyst free synthesis results in crystallite sizes on the order of a few nanometers, significantly smaller than commonly prepared polycrystalline graphene. Even though this method provides the flexibility of graphitizing polymer films on different substrates, substrate free graphitization of freestanding polymer layers has not been studied yet. We report for the first time the thermally induced graphitization and domain growth of free-standing nanocrystalline graphene thin films using in situ TEM techniques. High resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and electron energy loss spectroscopy (EELS) techniques were used to analyze the graphitization and the evolution of nanocrystalline domains at different temperatures by characterizing the crystallinity and domain size, further supported by ex situ Raman spectroscopy. The graphitization was comparable to the substrate supported heating and the temperature dependence of graphitization was analyzed. In addition, the in situ analysis of the graphitization enabled direct imaging of some of the growth processes taking place at different temperatures.

4.
Beilstein J Nanotechnol ; 8: 2719-2728, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29354343

RESUMO

Based on magnetic-field-assisted growth of carbon nanofibers in an open ethanol flame we fabricated arrays of carbon nanofibers with different degrees of orientation. Inspired by the dry adhesive system of geckos we investigated the adhesive properties of such carbon nanofiber arrays with ordered and random orientation. AFM-based force spectroscopy revealed that adhesion force and energy rise linear with preload force. Carbon nanofibers oriented by a magnetic field show a 68% higher adhesion (0.66 N/cm2) than the randomly oriented fibers. Endurance tests revealed that the carbon nanofiber arrays withstand 50.000 attachment/detachment cycles without observable wear.

5.
Data Brief ; 5: 309-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26566541

RESUMO

Metal matrix composites (MMCs) exhibit improved strength but suffer from low ductility. Metal particles reinforcement can be an alternative to retain the ductility in MMCs (Bauri and Yadav, 2010; Thakur and Gupta, 2007) [1,2]. However, processing such composites by conventional routes is difficult. The data presented here relates to friction stir processing (FSP) that was used to process metal particles reinforced aluminum matrix composites. The data is the processing parameters, rotation and traverse speeds, which were optimized to incorporate Ni particles. A wide range of parameters covering tool rotation speeds from 1000 rpm to 1800 rpm and a range of traverse speeds from 6 mm/min to 24 mm/min were explored in order to get a defect free stir zone and uniform distribution of particles. The right combination of rotation and traverse speed was found from these experiments. Both as-received coarse particles (70 µm) and ball-milled finer particles (10 µm) were incorporated in the Al matrix using the optimized parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA