Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Basic Microbiol ; 63(8): 930-943, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37189223

RESUMO

Surfactin is a signal to trigger biofilm formation against harsh environments. Generally, harsh environments can result in change of the cellular redox state to induce biofilm formation, but we know little about whether the cellular redox state influences biofilm formation via surfactin. Here, the reductant glucose could reduce surfactin and enhance biofilm formation by a surfactin-indirect way. The oxidant H2 O2 led to a decrease of surfactin accompanying with weakened biofilm formation. Spx and PerR were both necessary for surfactin production and biofilm formation. H2 O2 improved surfactin production but inhibited biofilm formation by a surfactin-indirect manner in Δspx, while it reduced surfactin production without obvious influence on biofilm formation in ΔperR. The ability against H2 O2 stress was enhanced in Δspx, but weakened in ΔperR. Thereby, PerR was favorable for resisting oxidative stress, while Spx played a negative role in this action. Knockout and compensation of rex also supported that the cells could form biofilm by a surfactin-indirect way. Collectively, surfactin is not a unique signal to trigger biofilm formation, and the cellular redox state can influence biofilm formation by a surfactin-direct or -indirect way in Bacillus amyloliquefaciens WH1.


Assuntos
Bacillus amyloliquefaciens , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Tensoativos/farmacologia , Biofilmes , Oxirredução , Lipopeptídeos/farmacologia , Lipopeptídeos/metabolismo
2.
Metab Eng Commun ; 12: e00174, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34094854

RESUMO

Surfactin, a quorum sensing signal molecule, is correlated with carbon metabolism in Bacillus amyloliquefaciens. In the present work, we found that mutation of srfA (ΔsrfA) led to an obviously changed carbon metabolism in B. amyloliquefaciens. Firstly, the PTS-glucose system was significantly increased as a feedback to glucose exhaustion. Secondly, the basic carbon metabolism such as glycolysis and TCA cycle was obviously weakened in ΔsrfA. Thirdly, the global regulator of CcpA (carbon catabolite protein A) and P ~ Ser46-HPr (seryl-phosphorylated form of histidine-containing protein) to mediate the CcpA-dependent CCR (carbon catabolite repression) were not increased, but the ability to use extracellular non- and less-preferred carbon sources was down-regulated in ΔsrfA. Fourthly, the carbon overflow metabolism such as biosynthesis of acetate was enhanced while biosynthesis of acetoin/2,3-butanediol and branched-chain amino acids were weakened in ΔsrfA. Finally, ΔsrfA could use most of non- and less-preferred carbon sources except for fatty acids, branched chain amino acids, and some organic acids (e.g. pyruvate, citrate and glutamate) after glucose exhaustion. Collectively, surfactin showed a global influence on carbon metabolism in B. amyloliquefaciens. Our studies highlighted a way to correlate quorum sensing with carbon metabolism via surfactin in Bacillus species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA