Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
2.
Emerg Infect Dis ; 30(6): 1285-1288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703022

RESUMO

We isolated novel reassortant avian influenza A(H5N6) viruses containing genes from clade 2.3.4.4b H5N1 virus and low pathogenicity avian influenza viruses in carcasses of whooper swans and bean geese in South Korea during December 2023. Neuraminidase gene was from a clade 2.3.4.4b H5N6 virus infecting poultry and humans in China.


Assuntos
Animais Selvagens , Aves , Vírus da Influenza A , Influenza Aviária , Filogenia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , República da Coreia/epidemiologia , Animais Selvagens/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Aves/virologia , Vírus Reordenados/genética , História do Século XXI , Humanos , Neuraminidase/genética
3.
One Health ; 18: 100719, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38585666

RESUMO

The winter of 2020-2021 in South Korea witnessed severe outbreaks of Highly Pathogenic Avian Influenza (HPAI) viruses, specifically multiple genotypes of the H5N8 subtype. These outbreaks prompted an extensive investigation into the genetic characteristics and evolutionary dynamics of these viruses. Under the auspices of the National Institute of Wildlife Disease Control and Prevention (NIWDC), we conducted a nationwide surveillance program, collecting 7588 specimens from diverse wild bird habitats. Influenza A viruses were isolated at a rate of 5.0%, with HPAI H5N8 viruses accounting for 38.5% of isolates, predominantly found in wild bird carcasses (97.3%). Genetic analysis revealed the emergence of novel HPAI genotypes due to genetic reassortment events. G1 and G2 viruses were separately introduced into Korea, with G1 viruses displaying dynamic behavior, resulting in diverse sub-genotypes (G1-1 to G1-5) and mainly isolated from clinical specimens. Conversely, the G2 virus, introduced later, became the dominant strain consistently isolated mainly from bird carcasses (88.9%). These findings underscore the emergence of numerous novel HPAI genotypes shaped by multiple reassortment events in high-density wintering grounds of migratory birds. These sites act as hotspots for genetic exchanges, significantly influencing avian ecology, including resident bird species, and contributing to HPAI H5N8 evolution. The genetic diversity and ongoing evolution of these viruses highlight the need for vigilant surveillance and adaptive control measures. Recognizing the potential spillover to human populations, a One Health approach is essential to mitigate the evolving threats posed by avian influenza.

4.
Emerg Infect Dis ; 30(2): 299-309, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215495

RESUMO

During October 2022-March 2023, highly pathogenic avian influenza (HPAI) A(H5N1) clade 2.3.4.4b virus caused outbreaks in South Korea, including 174 cases in wild birds. To understand the origin and role of wild birds in the evolution and spread of HPAI viruses, we sequenced 113 HPAI isolates from wild birds and performed phylogenetic analysis. We identified 16 different genotypes, indicating extensive genetic reassortment with viruses in wild birds. Phylodynamic analysis showed that the viruses were most likely introduced to the southern Gyeonggi-do/northern Chungcheongnam-do area through whooper swans (Cygnus cygnus) and spread southward. Cross-species transmission occurred between various wild bird species, including waterfowl and raptors, resulting in the persistence of HPAI in wild bird populations and further geographic spread as these birds migrated throughout South Korea. Enhanced genomic surveillance was an integral part of the HPAI outbreak response, aiding in timely understanding of the origin, evolution, and spread of the virus.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Animais , Humanos , Virus da Influenza A Subtipo H5N1/genética , Filogenia , Animais Selvagens , Aves , Influenza Humana/epidemiologia , Patos , República da Coreia/epidemiologia
5.
Front Vet Sci ; 9: 906944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799844

RESUMO

During 2014-2016, clade 2.3.4.4 H5N8 high pathogenicity avian influenza virus (HPAIV) caused the largest known avian influenza epidemic in South Korea. Based on data from earlier H5N8 outbreaks, primitive H5N8 virus in South Korea was classified into five subgroups: C1, C2, C3, C4, and C5. The present study investigated the pathogenic and molecular epidemiologic characteristics of H5N8 viruses obtained from 388 cases of poultry farms and 85 cases of wild bird infections in South Korea during 2014-2016. Representative viruses of subgroups C1, C2, and C4 showed significant pathobiological differences in specific pathogen-free (SPF) chickens, with the H1731 (C1) virus showing substantially lower infectivity, transmissibility, and pathogenicity than the H2102 (C2) and H1924 (C4) viruses. Full genome sequence analysis showed the number of mutations that significantly increased in domestic duck-origin H5N8 HPAIVs compared to the viruses from gallinaceous poultry. These differences may have been due to the long-term circulation of viruses in domestic duck farms. The same mutations, at positions 219 and 757 of PB1, independently evolving in the C0, C1, and C2 subgroups may have been positively selected, resulting in convergent evolution at the amino acid level. Bayesian discrete trait phylodynamic analysis (DTA) indicated multiple introductions of H5N8 HPAIV from wild birds into domestic poultry in various regions in South Korea. Following initial viral introduction into domestic duck farms in the western part of Korea, domestic ducks played a major role in viral transmission and maintenance. These findings highlight the need for continued genomic surveillance and pathobiological characterization of HPAIV in birds. Enhanced biosecurity in poultry farms should be implemented to prevent the introduction, maintenance, and spread of HPAIV.

6.
Transbound Emerg Dis ; 69(5): 2588-2599, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34863022

RESUMO

Human infection by avian-origin subtype H10 influenza viruses has raised concerns about the pandemic potential of these microbes. H10 subtype low pathogenic avian influenza viruses (LPAIVs) have been isolated from wild birds and poultry worldwide. Here, we isolated 36 H10 LPAIVs from wild bird habitats (a mean annual rate of 3.8% of all avian influenza virus isolations) from January 2010 to April 2019 through a nationwide active surveillance program for avian influenza viruses (AIVs). Phylogenetic analysis revealed that the haemagglutinin (HA) gene of H10 isolates formed eight distinct genetic subgroups (HA-A-H). Unlike other Eurasian-origin subgroups, the HA-H subgroup belonged to the North American lineage. Gene-constellation analysis revealed that 24 H10 LPAIVs constituted ≥18 distinct genotypes, representing high levels of genetic diversity. An intravenous pathogenicity index (IVPI) experiment showed that the pathogenicity of representative strains of the HA-B, E and G subgroups possessing an IVPI score >1.2 was associated with replication capacity in the chicken kidney in the absence of trypsin. Intranasal inoculation experiments showed that a representative strain of the HA-D subgroup replicated and transmitted in chickens without clinical signs. Subclinical virus shedding in chickens may contribute to its silent spread among the poultry population. Moreover, six representative viruses replicated in the lungs of mice without prior adaptation and a representative strain of the HA-C subgroup caused 40% mortality, with severe body weight loss. These findings highlight the importance of intensive surveillance of wild bird habitats, poultry farms and the animal-human interface, along with appropriate risk assessment of isolated viruses.


Assuntos
Vírus da Influenza A , Influenza Aviária , Doenças dos Roedores , Animais , Animais Selvagens , Galinhas , Hemaglutininas , Humanos , Influenza Aviária/epidemiologia , Camundongos , Filogenia , Aves Domésticas , Tripsina/genética
7.
Transbound Emerg Dis ; 68(6): 3180-3186, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34347386

RESUMO

The first human case of zoonotic A(H7N4) avian influenza virus (AIV) infection was reported in early 2018 in China. Two months after this case, novel A(H7N4) viruses phylogenetically related to the Jiangsu isolate emerged in ducks from live bird markets in Cambodia. During active surveillance in Cambodia, a novel A(H7N6) reassortant of the zoonotic low pathogenic AIV (LPAIV) A(H7N4) was detected in domestic ducks at a slaughterhouse. Complete genome sequencing and phylogenetic analysis showed that the novel A(H7N6) AIV is a reassortant, in which four gene segments originated from Cambodia A(H7N4) viruses and four gene segments originated from LPAIVs in Eurasia. Animal infection experiments revealed that chickens transmitted the A(H7N6) virus via low-level direct contacts, but ducks did not. Although avian-origin A(H7Nx) LPAIVs do not contain the critical mammalian-adaptive substitution (E627K) in PB2, the lethality and morbidity of the A(H7N6) virus in BALB/c mice were similar to those of A(H7N9) viruses, suggesting potential for interspecies transmission. Our study reports the emergence of a new reassortant of zoonotic A(H7N4) AIVs with novel viral characteristics and emphasizes the need for ongoing surveillance of avian-origin A(H7Nx) viruses.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Doenças dos Roedores , Animais , Camboja/epidemiologia , Galinhas , China , Patos , Influenza Aviária/epidemiologia , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Vírus Reordenados/genética
9.
BMC Vet Res ; 16(1): 432, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33167987

RESUMO

BACKGROUND: South Korea conducts annual national surveillance programs to detect avian influenza (AI) in domestic poultry, live bird markets, and wild birds. In March 2017, an AIV was isolated from fecal samples in an outdoor aviary flight cage in a zoo in Korea. RESULTS: Nucleotide sequencing identified the isolate as low pathogenic avian influenza virus (LPAIV) H7N7, and DNA barcoding analysis identified the host species as red-crowned crane. This isolate was designated A/red-crowned crane/Korea/H1026/2017 (H7N7). Genetic analysis and gene constellation analysis revealed that A/red-crowned crane/Korea/H1026/2017 (H7N7) showed high similarity with four H7N7 LPAIVs isolated from wild bird habitats in Seoul and Gyeonggi in early 2017. CONCLUSIONS: Considering the genetic similarity and similar collection dates of the viruses, and the fact that zoo bird cages are vulnerable to AIV, it is likely that fecal contamination from wild birds might have introduced LPAIV H7N7 into the red-crowned crane at the zoo. Therefore, our results emphasize that enhanced biosecurity measures should be employed during the wild bird migration season, and that continued surveillance should be undertaken to prevent potential threats to avian species in zoos and to humans.


Assuntos
Vírus da Influenza A Subtipo H7N7/isolamento & purificação , Influenza Aviária/virologia , Animais , Animais de Zoológico/virologia , Aves , Fezes/virologia , Vírus da Influenza A Subtipo H7N7/genética , República da Coreia
10.
Infect Genet Evol ; 86: 104599, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33096302

RESUMO

Since 2004, several outbreaks of highly pathogenic avian influenza (HPAI) have been reported in Cambodia. Until 2013, all H5N1 viruses identified in Cambodia belonged to clade 1 and its subclades. H5N1 HPAI viruses belonging to clade 2.3.2.1c have been dominant since the beginning of 2014, with various genotypes (KH1-KH5) reported. Here, we isolated nine H5N1 HPAI viruses from domestic poultry farms and slaughterhouses in Cambodia during 2018-2019 and performed phylogenetic analysis of whole genome sequences. All isolates were classified as H5 clade 2.3.2.1c viruses and all harbored multi-basic amino acid sequences (PQRERRRKR/GLF) at the haemagglutinin (HA) cleavage site. Phylogenetic analysis revealed that the H5N1 isolates in this study belonged to the KH2 genotype, the dominant genotype in Cambodia in 2015. Phylogenetic analysis of the HA gene showed that the isolates were divided into two groups (A and B). The results of Bayesian discrete phylogeography analysis revealed that the viral migration pathways from Vietnam to Cambodia (Bayes factor value: 734,039.01; posterior probability: 1.00) and from Cambodia to Vietnam (Bayes factor value: 26,199.95; posterior probability: 1.00) were supported by high statistical values. These well-supported viral migrations between Vietnam and Cambodia demonstrate that viral transmission continued in both directions. Several factors may have contributed to this, including the free-grazing duck system and movement of poultry-related products. Thus, the results emphasize the need for an enhanced international surveillance program to better understand transboundary infection and evolution of H5N1 HPAI viruses, along with implementation of more stringent international trade controls on poultry and poultry products.


Assuntos
Genótipo , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Filogenia , Filogeografia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Animais , Camboja/epidemiologia , História do Século XXI , Humanos , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Doenças das Aves Domésticas/história , Vigilância em Saúde Pública
11.
Sci Rep ; 10(1): 12151, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699272

RESUMO

H5 and H7 subtypes of low pathogenic avian influenza viruses (LPAIVs) can mutate to highly pathogenic forms and are therefore subject to stringent controls. We characterized H5 LPAIVs isolated from wild-bird habitats and duck farms in South Korea from 2010 to 2017. Through nationwide active surveillance for AIVs, 59 H5 LPAIVs were isolated from wild-bird habitats (a mean annual rate of 5.3% of AIV isolations). In 2015, one LPAI H5N3 strain was isolated on a duck farm. Phylogenetic analysis revealed that the hemagglutinin (HA) gene of H5 isolates belonged to the Eurasian lineage, classified into three subgroups (HA-II, HA-III, and HA-IV). The H5 LPAIVs of the HA-III and HA-IV subgroups appeared in 2015 and 2017 in unusually high proportions (13.1% and 14.4%, respectively). In gene-constellation analysis, H5 LPAIVs isolated from 2015 to 2017 constituted ≥ 35 distinct genotypes, representing high levels of genetic diversity. Representative strains of three HA subgroups replicated restrictively in specific-pathogen-free chickens. Among the 11 isolates that were tested, 10 infected and replicated in mice without prior adaptation. The frequency of recent H5 LPAIV isolates with high genetic diversity indicates the importance of continued surveillance in both wild birds and poultry to monitor genetic and pathobiological changes.


Assuntos
Aves/virologia , Patos/virologia , Hemaglutininas/genética , Vírus da Influenza A/metabolismo , Influenza Aviária/patologia , Sequência de Aminoácidos , Animais , Animais Domésticos , Animais Selvagens , Variação Genética , Genótipo , Hemaglutininas/classificação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Mutação , Filogenia , República da Coreia
12.
Infect Genet Evol ; 78: 104056, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31683010

RESUMO

Since 2017, clade 2.3.4.4b H5N6 highly pathogenic avian influenza viruses (HPAIVs) have been detected over a broad geographic region, including Eurasia. These viruses have evolved through reassortment with Eurasian low pathogenic avian influenza viruses (LPAIVs), resulting in multiple genotypes. Here, we sequenced the full-length genome of 15 H5N6 HPAIVs collected from wild birds and poultry farms in South Korea from January to March 2018. A comparative phylogenetic analysis was then conducted. Three distinct genotypes were identified in South Korea during 2017/2018, including a novel reassortant genotype, H214. The novel reassortant H5N6 viruses isolated in this study possessed PB2, PA, and NP gene segments of Eurasian LPAIV on a genetic backbone of the H35-like genotype, which was identified in Korea and the Netherlands during 2017. Bayesian molecular clock analysis suggested that the novel reassortant viruses were generated most likely during the fall migration/wintering season of migratory waterfowl in 2017. Considering the continued emergence and spread of clade 2.3.4.4 HPAIV, enhanced surveillance of wild waterfowl is needed for early detection of HPAIV incursions.


Assuntos
Doenças das Aves/virologia , Vírus da Influenza A/classificação , Influenza Aviária/virologia , Vírus Reordenados/classificação , Animais , Animais Selvagens/virologia , Teorema de Bayes , Aves , Genótipo , Vírus da Influenza A/genética , Países Baixos , Filogenia , Aves Domésticas , Vírus Reordenados/genética , República da Coreia , Sequenciamento Completo do Genoma
13.
Transbound Emerg Dis ; 67(2): 947-955, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31769586

RESUMO

Since 2004, there have been multiple outbreaks of H5 highly pathogenic avian influenza (HPAI) viruses in Laos. Here, we isolated H5N1 HPAI viruses from poultry outbreaks in Laos during 2015-2018 and investigated their genetic characteristics and pathogenicity in chickens. Phylogenetic analysis revealed that the isolates belonged to clade 2.3.2.1c and that they differed from previous Laos viruses with respect to genetic composition. In particular, the isolates were divided into two genotypes, each of which had a different NS segments. The results of possible migration analysis suggested a high likelihood that the Laos isolates were introduced from neighbouring countries, particularly Vietnam. The recent Laos isolate, A/Duck/Laos/NL-1504599/2018, had an intravenous pathogenicity index score of 3.0 and showed a 50% chicken lethal dose of 102.5 EID50 /0.1 ml, indicating high pathogenicity. The isolated viruses exhibited no critical substitution in the markers associated with mammalian adaptation, but possess markers related to neuraminidase inhibitor resistance. These results emphasize the need for ongoing surveillance of circulating influenza virus in South-East Asia, including Laos, to better prepare for and mitigate global spread of H5 HPAI.


Assuntos
Galinhas/virologia , Surtos de Doenças/veterinária , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Animais , Genótipo , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/virologia , Laos/epidemiologia , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos
14.
mBio ; 10(6)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690675

RESUMO

In this study, we demonstrate a novel mechanism for hemagglutinin (HA) activation in a naturally occurring H7N6 avian influenza A virus strain, A/mallard duck/Korea/6L/2007 (A/Mdk/6L/07). This novel mechanism allows for systemic infection of chickens, ducks, and mice, and A/Mdk/6L/07 can replicate in vitro without exogenous trypsin and exhibits broad tissue tropism in animals despite the presence of a monobasic HA cleavage motif (PEIPKGR/G). The trypsin-independent growth phenotype requires the N6 neuraminidase and the specific recognition of glycine at the P2 position of the HA cleavage motif by a thrombin-like protease. Correspondingly, viral growth is significantly attenuated by the addition of a thrombin-like protease inhibitor (argatroban). These data provide evidence for a previously unrecognized virus replication mechanism and support the hypothesis that thrombin-mediated HA cleavage is an important virulence marker and potential therapeutic target for H7 influenza viruses.IMPORTANCE The identification of virulence markers in influenza viruses underpins risk assessment programs and the development of novel therapeutics. The cleavage of the influenza virus HA is a required step in the viral life cycle, and phenotypic differences in viruses can be caused by changes in this process. Here, we describe a novel mechanism for HA cleavage in an H7N6 influenza virus isolated from a mallard duck. The mechanism requires the N6 protein and full activity of thrombin-like proteases and allows the virus to cause systemic infection in chickens, ducks, and mice. The thrombin-mediated cleavage of HA is thus a novel virulence determinant of avian influenza viruses.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Influenza Aviária/virologia , Neuraminidase/metabolismo , Animais , Galinhas/virologia , Patos/virologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Virais/metabolismo , Virulência/fisiologia
15.
BMC Infect Dis ; 19(1): 676, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370782

RESUMO

BACKGROUND: In addition to seasonal influenza viruses recently circulating in humans, avian influenza viruses (AIVs) of H5N1, H5N6 and H7N9 subtypes have also emerged and demonstrated human infection abilities with high mortality rates. Although influenza viral infections are usually diagnosed using viral isolation and serological/molecular analyses, the cost, accessibility, and availability of these methods may limit their utility in various settings. The objective of this study was to develop and optimized a multiplex detection system for most influenza viruses currently infecting humans. METHODS: We developed and optimized a multiplex detection system for most influenza viruses currently infecting humans including two type B (both Victoria lineages and Yamagata lineages), H1N1, H3N2, H5N1, H5N6, and H7N9 using Reverse Transcriptional Loop-mediated Isothermal Amplification (RT-LAMP) technology coupled with a one-pot colorimetric visualization system to facilitate direct determination of results without additional steps. We also evaluated this multiplex RT-LAMP for clinical use using a total of 135 clinical and spiked samples (91 influenza viruses and 44 other human infectious viruses). RESULTS: We achieved rapid detection of seasonal influenza viruses (H1N1, H3N2, and Type B) and avian influenza viruses (H5N1, H5N6, H5N8 and H7N9) within an hour. The assay could detect influenza viruses with high sensitivity (i.e., from 100 to 0.1 viral genome copies), comparable to conventional RT-PCR-based approaches which would typically take several hours and require expensive equipment. This assay was capable of specifically detecting each influenza virus (Type B, H1N1, H3N2, H5N1, H5N6, H5N8 and H7N9) without cross-reactivity with other subtypes of AIVs or other human infectious viruses. Furthermore, 91 clinical and spiked samples confirmed by qRT-PCR were also detected by this multiplex RT-LAMP with 98.9% agreement. It was more sensitive than one-step RT-PCR approach (92.3%). CONCLUSIONS: Results of this study suggest that our multiplex RT-LAMP assay may provide a rapid, sensitive, cost-effective, and reliable diagnostic method for identifying recent influenza viruses infecting humans, especially in locations without access to large platforms or sophisticated equipment.


Assuntos
Colorimetria/métodos , Vírus da Influenza A/genética , Influenza Humana/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Reações Cruzadas , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Virus da Influenza A Subtipo H5N1/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Transcrição Reversa
16.
Virol Sin ; 34(5): 501-507, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31240618

RESUMO

Severe fever with thrombocytopenia syndrome phlebovirus (SFTSV) has a wide host range. Not only has it been found in humans, but also in many wild and domesticated animals. The infection of breeding deer on farms is a particularly worrisome public health concern due to the large amount of human contact and the diverse use of deer products, including raw blood. To investigate the prevalence of breeding domesticated deer, we examined the SFTSV infection rate on deer farms in South Korea from 2015 to 2017. Of the 215 collected blood samples, 0.9% (2/215) were found to be positive for viral RNA by PCR, and sequence analysis showed the highest homology with the KADGH human isolate. Both SFTSV-specific recombinant N and Gn protein-based ELISAs revealed that 14.0% (30/215) and 7.9% (17/215) of collected blood specimens were positive for SFTSV antibody. These results demonstrate that the breeding farm deer are exposed to SFTSV and could be a potential infection source for humans through direct contact or consumption of byproducts.


Assuntos
Animais Domésticos/virologia , Infecções por Bunyaviridae/veterinária , Cervos/virologia , Animais , Infecções por Bunyaviridae/sangue , Infecções por Bunyaviridae/transmissão , Fazendas , Phlebovirus/genética , Filogenia , RNA Viral/genética , República da Coreia , Análise de Sequência de DNA , Estudos Soroepidemiológicos
17.
Sci Rep ; 9(1): 8318, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31165766

RESUMO

The reverse genetics (RG) system of influenza A viruses is well established. However, the conventional sequence-dependent method for cloning influenza genome segments is time-consuming and requires multiple processes (eg. enzyme digestion and ligation) and exhibits low cloning efficiency compared to the sequence-independent cloning method. In this study, we improved influenza genome cloning into the pHW2000 vector for an RG system by incorporating a sequence-independent circular polymerase extension cloning (CPEC) approach which requires only 2 steps (reverse transcription and one-pot CPEC-PCR) and takes about 4 hours before the transformation. The specifically designed viral gene and vector primers used for CPEC-PCR have improved cloning efficiency ranging from 63.6 to 100% based on the results of gene-specific colony PCR which was additionally confirmed by enzyme digestion. We successfully cloned all genes from broad subtypes of influenza A viruses (H1-H12, N1-N9) and rescued by the RG system. Our results demonstrate that this method-one-Pot cloning for influenza A virus-was efficient in terms of required time and cloning rate. In conclusion, the novel cloning method for influenza A virus will contribute to a significant reduction in the time required for genetic studies of emerging influenza viruses.


Assuntos
Clonagem Molecular , Vírus da Influenza A/genética , Genética Reversa/métodos , Animais , Primers do DNA/genética , DNA Complementar/genética , Cães , Genes Virais , Vetores Genéticos , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Fenótipo , Plasmídeos/genética , Reação em Cadeia da Polimerase
18.
Vaccine ; 37(3): 484-493, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30502069

RESUMO

Because H5N1 influenza viruses continuously threaten the public health, the WHO has prepared various clades of H5N1 mock-up vaccines as one of the measures for pandemic preparedness. The recent worldwide outbreak of H5Nx virus which belongs to clade 2.3.4.4 and of which H5N6 subtype belongs and already caused human infection also increases the need of pandemic vaccine for such novel emerging viruses. In this study, we evaluated the protective efficacy and immunogenicity of an egg-based and inactivated whole-virus H5N8 (IDCDC-RG43A) developed by CDC containing HA and NA gene of the parent virus A/gyrfalcon/Washington/41088-6/2014. Mice vaccinated two times elicited low to moderate antibody titer in varying amount of antigen doses against the homologous H5N8 vaccine virus and heterologous intra-clade 2.3.4.4 H5N6 (A/Sichuan/26221/2014) virus. Mice immunized with at least 3.0 µg/dose of IDCDC-RG43A with aluminum hydroxide adjuvant were completely protected from lethal challenge with the mouse-adapted H5N8 (A/Environment/Korea/ma468/2015, maH5N8) as well as cleared the viral replication in tissues including lung, brain, spleen, and kidney. Vaccinated ferrets induced high antibody titers against clade 2.3.4.4 H5N8/H5N6 viruses and the antibody showed high cross-reactivity to clade 2.2 H5N1 but not to clade 1 and 2.3.4 viruses as measured by hemagglutinin inhibition and serum neutralization assays. Furthermore, administration of the vaccine in ferrets resulted in attenuation of clinical disease signs and virus spread to peripheral organs including lung, spleen, and kidney from high dose challenge with maH5N8 virus. The protective and immunogenic characteristic of the candidate vaccine are essential attributes to be considered for further clinical trials as a pre-pandemic vaccine for a potential pandemic virus.


Assuntos
Anticorpos Neutralizantes/sangue , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H5N8/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Pandemias/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Proteção Cruzada , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Furões , Vacinas contra Influenza/administração & dosagem , Camundongos
19.
Nat Microbiol ; 4(3): 438-446, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30531978

RESUMO

Severe fever with thrombocytopenia syndrome phlebovirus (SFTSV), listed in the most dangerous pathogens by the World Health Organization, has 12-30% fatality rates with a characteristic thrombocytopenia syndrome. With a majority of clinically diagnosed SFTSV patients older than ~50 years of age, age is a critical risk factor for SFTSV morbidity and mortality. Here, we report an age-dependent ferret model of SFTSV infection and pathogenesis that fully recapitulates the clinical manifestations of human infections. Whereas young adult ferrets (≤2 years of age) did not show any clinical symptoms and mortality, SFTSV-infected aged ferrets (≥4 years of age) demonstrated severe thrombocytopenia, reduced white blood cell counts and high fever with 93% mortality rate. Moreover, a significantly higher viral load was observed in aged ferrets. Transcriptome analysis of SFTSV-infected young ferrets revealed strong interferon-mediated anti-viral signalling, whereas inflammatory immune responses were markedly upregulated and persisted in aged ferrets. Thus, this immunocompetent age-dependent ferret model should be useful for anti-SFTSV therapy and vaccine development.


Assuntos
Infecções por Bunyaviridae/fisiopatologia , Modelos Animais de Doenças , Furões , Phlebovirus/patogenicidade , Fatores Etários , Animais , Infecções por Bunyaviridae/imunologia , Perfilação da Expressão Gênica , Humanos , Imunocompetência , Inflamação , Interferons/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Phlebovirus/genética , Trombocitopenia/mortalidade , Trombocitopenia/virologia , Carga Viral
20.
Ticks Tick Borne Dis ; 9(5): 1202-1206, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29748119

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a newly emerging tick-borne infectious disease caused by the SFTS virus (SFTSV). To investigate the prevalence of SFTSV in domestic goats in South Korea, we collected blood samples in commercial slaughterhouses in Chungbuk Province in 2017. Of the 207 samples tested, 4 (2%) were found to be positive for viral RNA by RT-PCR and 30 (14.4%) were positive for SFTSV antibody as detected by a nucleocapsid (NP) protein-based ELISA. Phylogenetic analysis of the non-structural protein (NS) sequences showed that all viruses belonged to the genotype B, although they were clustered into two different sublineages that showed the highest homology with the KR612076-JP01 and KY789441-CB3 human isolate from South Korea. Further, we confirmed the specificity of seropositive goat sera by FRNT50 and western blotting analysis and found differential cross-reactivity of the sera with genotype A and B SFTSV strains. Collectively, this study suggests that relatively high numbers of goats are infected by antigenically different SFTSV strains, which might have a potential for zoonotic infection.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Bunyaviridae/veterinária , Phlebovirus/genética , Phlebovirus/imunologia , Doenças Transmitidas por Carrapatos/veterinária , Animais , Animais Domésticos/virologia , Antígenos Virais/imunologia , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/imunologia , Genótipo , Cabras , Proteínas do Nucleocapsídeo/imunologia , Filogenia , RNA Viral/genética , República da Coreia/epidemiologia , Estudos Soroepidemiológicos , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/imunologia , Doenças Transmitidas por Carrapatos/virologia , Proteínas não Estruturais Virais/genética , Zoonoses/epidemiologia , Zoonoses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA