Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Prosthodont Res ; 66(3): 491-501, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34853249

RESUMO

PURPOSE: The investigation of zirconia core surface pretreatments on the flexural strength of bilayered zirconia ceramics before and after artificial accelerating aging. METHODS: Ninety bar-shaped specimens were manufactured from Yttria Stabilized Tetragonal Zirconia Polycrystal (Y-TZP) and divided in three groups depending on zirconia surface pretreatment before veneering: layering with liner, pretreatment with silane-containing gas flame (SGF) with the Silano-Pen device and alumina air-abrasion. Half of the veneered specimens in each group (n=15) underwent artificial accelerating aging. A 4-point bending test was performed to determine flexural strength. Three specimens from each group were further analyzed using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) before veneering and after fracture (aged and non-aged subgroups). RESULTS: Alumina air-abrasion was correlated to increased phase transformation from tetragonal to monoclinic zirconia phase. Qualitative analysis revealed that with the majority of the specimens pretreated with the silane-containing gas flame, areas of the veneering material remained firmly attached to the zirconia core after flexural strength testing. There was no statistically significant difference on the flexural strength among the groups before or after aging. Artificial accelerating aging resulted in statistically significant higher flexural strength of the specimens after aging. CONCLUSION: SGF pretreatment can be an acceptable and feasible alternative method before the veneering of Y-TZP zirconia as it presented slightly higher bond strength compared with alumina air-abrasion which was associated with higher tetragonal to monoclinic (t→m) phase transformation. Accelerating aging leads to an increase of the mechanical properties under in vitro conditions.


Assuntos
Resistência à Flexão , Silanos , Óxido de Alumínio/química , Cerâmica/química , Materiais Dentários/química , Teste de Materiais , Propriedades de Superfície , Ítrio/química , Zircônio/química
2.
Dent Mater ; 30(12): e306-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24993809

RESUMO

OBJECTIVES: Dental zirconia restorations should present long-term clinical survival and be in service within the oral environment for many years. However, low temperature degradation could affect their mechanical properties and survival. The aim of this study was to investigate the effect of in vitro aging on the flexural strength of yttrium-stabilized (Y-TZP) zirconia ceramics for ceramic restorations. METHODS: One hundred twenty bar-shaped specimens were prepared from two ceramics (ZENO Zr (WI) and IPS e.max(®) ZirCAD (IV)), and loaded until fracture according to ISO 6872. The specimens from each ceramic (nx=60) were divided in three groups (control, aged for 5h, aged for 10h). One-way ANOVA was used to assess statistically significant differences among flexural strength values (P<0.05). The variability of the flexural strength values was analyzed using the two-parameter Weibull distribution function, which was applied for the estimation of Weibull modulus (m) and characteristic strength (σ0). The crystalline phase polymorphs of the materials (tetragonal, t, and monoclinic, m, zirconia) were investigated by X-ray diffraction (XRD) analysis, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. RESULTS: A slight increase of the flexural strength after 5h, and a decrease after 10h of aging, was recorded for both ceramics, however statistically significant was for the WI group (P<0.05). Both ceramics presented a t→m phase transformation, with the m-phase increasing from 4 to 5% at 5h to around 15% after 10h. SIGNIFICANCE: The significant reduction of the flexural strength after 10h of in vitro aging, suggests high fracture probability for one of the zirconia ceramics tested.


Assuntos
Cerâmica/química , Materiais Dentários/química , Ítrio/química , Zircônio/química , Algoritmos , Cristalografia , Módulo de Elasticidade , Teste de Materiais , Maleabilidade , Probabilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Estresse Mecânico , Propriedades de Superfície , Fatores de Tempo , Difração de Raios X
3.
J Prosthet Dent ; 108(2): 84-95, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22867805

RESUMO

STATEMENT OF PROBLEM: The flexural strength of zirconia core ceramics must predictably withstand the high stresses developed during oral function. The in-depth interpretation of strength parameters and the probability of failure during clinical performance could assist the clinician in selecting the optimum materials while planning treatment. PURPOSE: The purpose of this study was to evaluate the flexural strength based on survival probability and Weibull statistical analysis of 2 zirconia cores for ceramic restorations. MATERIAL AND METHODS: Twenty bar-shaped specimens were milled from 2 core ceramics, IPS e.max ZirCAD and Wieland ZENO Zr, and were loaded until fracture according to ISO 6872 (3-point bending test). An independent samples t test was used to assess significant differences of fracture strength (α=.05). Weibull statistical analysis of the flexural strength data provided 2 parameter estimates: Weibull modulus (m) and characteristic strength (σ(0)). The fractured surfaces of the specimens were evaluated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The investigation of the crystallographic state of the materials was performed with x-ray diffraction analysis (XRD) and Fourier transform infrared (FTIR) spectroscopy. RESULTS: Higher mean flexural strength (P<.001) and σ(0) were recorded for WZ ceramics. However IZ ceramics presented a higher m value and a microstructure with fewer voids and pores. The fractured surfaces presented similar fractographic properties (mirror regions followed by hackle lines zones). Both groups primarily sustained the tetragonal phase of zirconia and a negligible amount of the monoclinic phase. CONCLUSIONS: Although both zirconia ceramics presented similar fractographic and crystallographic properties, the higher flexural strength of WZ ceramics was associated with a lower m and more voids in their microstructure. These findings suggest a greater scattering of strength values and a flaw distribution that are expected to increase failure probability.


Assuntos
Falha de Restauração Dentária , Ligas Metalo-Cerâmicas/química , Maleabilidade , Zircônio/química , Análise do Estresse Dentário , Humanos , Teste de Materiais , Metalurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA